Jan 302017
 

Introduction

The earth’s surface can subside because of underground mining when rock is removed at depth. Although subsidence can occur due to hard rock mining, this article only considers the effects of coal mining.

When coal is extracted underground, gravity and the weight of the overlying rock may cause the layers of rock to shift and sink downward into the void left by the removal of the coal. Ultimately, this process can affect the surface, causing the ground to sag and crack and holes to form. Merely an inch of differential subsidence beneath a residential structure can cause several thousand dollars worth of damage.

Subsidence can happen suddenly and without warning. Detailed investigations of an undermined area are needed before development occurs to resolve the magnitude of the subsidence hazard and to determine if safe construction is possible. While investigations after development can determine the extent of undermining and potential subsidence, often, existing buildings cannot be protected against subsidence hazards. The cost of remedial measures is often extremely high. Continue reading »

Jan 232017
 

The CGS’s Matt Morgan and Jon White were two of the co-authors on one of the top-ten Geological Society of America (GSA) 2016 book chapters and journal articles, this out of 600 papers. The article describes a comprehensive forensic analysis of the massive West Salt Creek rock avalanche that occurred in late May 2014 in western Colorado (USA). The analysis relied on large-scale (1:1000) structural mapping accomplished via high-resolution unmanned aircraft system imagery along with seismic data generated by more than twenty stations within approximately 500 miles (800 km) of the event. The avalanche was the largest mass-movement slope failure in the historical record of Colorado, and it killed three people, narrowly avoiding destroying a gas wellhead.


Citation: Coe, Jeffrey A., Rex L. Baum, Kate E. Allstadt, Bernard F. Kochevar, Robert G. Schmitt, Matthew L. Morgan, Jonathan L. White, Benjamin T. Stratton, Timothy A. Hayashi, and Jason W. Kean. 2016. “Rock-Avalanche Dynamics Revealed by Large-Scale Field Mapping and Seismic Signals at a Highly Mobile Avalanche in the West Salt Creek Valley, Western Colorado.” Geosphere 12 (2): 607–31. doi:10.1130/GES01265.1.
Jan 162017
 

On solid ground — that’s how many of us think of good old, stable earth. So it’s disconcerting when the ground moves out from under us in any way.

Because of our environment, history, and geology, Colorado has conditions where ground movements can costs millions of dollars in annual property damage from repair and remediation, litigation, required investigations, and mitigation. There has been recent attention to swelling clay soils and heaving claystone bedrock, and the media has helped publicize these problems, which are predominant along the Front Range. But that’s only half the story. Geologic hazards in Colorado also include ground that sinks. Ground subsidence and soil settlement pose significant hazards in Colorado in many areas throughout the state. A variety of causes, some human-made and others inherent to the geology and geomorphology of Colorado, cause these sinking problems. Continue reading »

Jan 122017
 

At the end of the 19th and beginning of the 20th Century, some of the first settlers of the plateau region of western Colorado along the Colorado River, and the Uncompahgre and Paonia river basins, looked to fruit crops for their livelihood. The semi-arid but moderate climate was well suited for fruit orchards once irrigation canal systems could be constructed.

But serious problems occurred when certain lands were first broken out for agriculture and wetted by irrigation. They sank, so much in places (up to four feet!) that irrigation-canal flow directions were reversed, ponding occurred, and whole orchards, newly planted with fruit trees imported by rail and wagon at considerable expense, were lost. While not understood, fruit growers and agriculturists began to recognize the hazards of sinking ground. Horticulturists with the Colorado Agricultural College and Experimental Station (the predecessor of Colorado State University) made one of the first references to collapsible soil in their 1910 publication, Fruit-Growing in Arid Regions: An Account of Approved Fruit-Growing Practices in the Inter-Mountain Country of Western United States (pdf download). They warned about sinking ground and in their chapter, Preparation of Land for Planting, made one of the first recommendations for mitigation of the hazard. They stated that when breaking out new land for fruit orchards, the fields should be flood irrigated for a suitable time to induce soil collapse, before final grading of the orchard field, irrigation channels excavation, and planting the fruit tree seedlings. Continue reading »

Jan 112017
 

Regarding the Colorado Geological Survey (an article appearing in the Mining Reporter, March 1907):

We note that one of our contemporaries, in recently commenting on the University bill creating a State Geological Survey of Colorado — the bill reported favorably on by the joint Senate and House mining committee — voices in no uncertain language its regret at the “truly pitiable outcome of the effort to establish a Geological Survey of Colorado.” In a lengthy and well-written editorial, criticism is made of the proposed advisory board, particularly of the placing thereon of the presidents of the State University and the State Agricultural College; also, having the survey located at Boulder instead of Denver; of the naming as state geologist, the professor of geology of the State University, who may be a good teacher, but who, like the majority, may or may not be an effective executive; and lastly, of the paltry appropriation of $5,000 annually for this important work in a state productive of $50,000,000 and more yearly.

Exception is also taken to the naming of state institution teachers as assistants to the State Geologist, who ought to have the assistance of men less academic and having a knowledge of the exploitation of ore deposits and of the search for them.

This editorial expression, coming from a former Coloradoan, is worthy of consideration. It is in accord, in large part, with our own views, as our readers know. In addition to the criticisms made by our contemporary, we would like to emphasize another objectionable feature in this favorably reported bill, viz., the naming of any one as state geologist who is not to devote his entire time to the survey work. — from the Mining Reporter, vol. LV, March 28, 1907, no. 13, Denver, Colorado.

We’re happy to say that our current efforts to provide professional geologic information to the residents of Colorado far exceed the original scope of responsibilities and possibilities of the Territorial Geologist. But like those old-time miners, walking the mountains of this beautiful state, we also share a real passion for what we are doing.

You can find an in-depth history of the Survey and its 1872-legislated precursor, the office of Territorial Geologist, in IS-27 History of The Colorado Geological Survey (1872-1988), a free PDF download at our bookstore.


Citation: Rold, J. W., and S. D. Schwochow. IS-27 History of The Colorado Geological Survey (1872-1988). Information Series, IS-27. Denver, CO: Colorado Geological Survey, Department of Natural Resources, 1989.
Jan 102017
 

Many areas of Colorado are underlain by bedrock that is composed of evaporite minerals. Indicative of the word evaporite, these minerals were deposited during the cyclic evaporation of shallow seas that existed in central Colorado millions of years ago. As the water continued to evaporate, the remaining solution became hyperconcentrated with salts: minerals such as gypsum, anhydrite, and halite (rock salt). These minerals precipitate out of solution and accumulate in shallow nearshore basins on the bottom of the sea floor. Depending on the paleoevironment, thinly interbedded fine sandstone, mudstone, and black shales can also occur in the evaporite. Mostly Late Paleozoic and Mesozoic rock formations contain evaporite beds in Colorado. Some are thin and discontinuous — only minor beds within a rock formation. Others are massive, with evaporitic minerals many hundreds of feet thick.

Evaporitic bedrock locations in Colorado. [Gypsum Mines from Mineral Resources of Colorado, 1968, P. 191; Geology Modified From Tweto, 1979]

Evaporitic bedrock locations in Colorado. [Gypsum Mines from MI-07 Mineral and Water Resources of Colorado, 1968, P. 191; Geology modified from Tweto, 1979]

Millions of years of burial, plastic deformation, mountain building, and erosion have forced the evaporite beds to the shallow subsurface and/or ground surface today. Evaporite minerals in Colorado are a valuable mining resource. Historic mining occurred throughout the state where thin gypsum beds were exposed. Active mining continues in the massive deposits near the town of Gypsum. Continue reading »

Apr 222016
 

Subsidence experts visiting the Netherlands. Deltares hosted 15 international subsidence experts to discuss subsidence problems worldwide at the annual meeting of UNESCO Land Subsidence working group. Gilles Erkens, subsidence expert Deltares showed the impact of subsidence in the Netherlands during a field trip.

Land subsidence is causing more and more damage every year. It scarcely registers on the radar of many countries. Even so, the impact on coastal cities and peat areas is increasingly apparent. Levels of flood damage are rising and the risk of casualties is following. Land subsidence can also lead to major economic losses such as structural damage and high maintenance costs for roads, railways, dikes, pipelines and buildings. The total bill worldwide mounts up to many billions of dollars annually. It can only rise further in the future with population growth and the intensification of economic activities in delta areas.