
Open File Report 95-01

1992–1993 Low-Temperature Geothermal Assessment Program, Colorado

By James A. Cappa and H. Thomas Hemborg

DOI: https://doi.org/10.58783/cgs.of9501.fymf2052

Colorado Geological Survey Division of Minerals and Geology Department of Natural Resources Denver, Colorado 1995 **Open File Report 95-1**

1992–1993 Low-Temperature Geothermal Assessment Program, Colorado

By James A. Cappa and H. Thomas Hemborg

Colorado Geological Survey Division of Minerals and Geology Department of Natural Resources Denver, Colorado 1995

ACKNOWLEDGEMENTS

This low-temperature geothermal assessment program was funded by the U.S. Department of Energy-Geothermal Division. The Colorado Geological Survey serves as a subcontractor to the Oregon Institute of Technology-Geo Heat Center for the purposes of fulfilling the terms of this contract within the State of Colorado.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe private property rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacture, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CONTENTS

Abstract1
Introduction1
Data Sources2
Data Format2
Fluid Chemistry3
Discussion3
Antelope Warm Spring, Mineral County5
Birdsie Warm Spring, Mineral County6
Brands Ranch Artesian Well, Jackson County6
Browns Canyon Warm Springs, Chaffee County6
Canon City Hot Springs, Fremont County6
Cebolla Hot Springs, Gunnison County6
Cement Creek Warm Springs, Gunnison County6
Clark Artesian Well, Pueblo County6
Colonel Chinn Hot Water Well, Delta County6
Conundrum Hot Springs, Pitkin County7
Cottonwood Hot Springs, Chaffee County7
Craig Warm Water Well, Moffat County7
Crowley Ranch Reserve Well, Archuleta County7
Deganahl Warm Water Well, Routt County7
Desert Reef (Florence) Hot Springs, Fremont County 8
Dexter Warm Springs, Conejos County8
Dotsero Warm Springs, Eagle County8
Dunton Hot Springs, Dolores County8
Dutch Crowley Artesian Well, Archuleta County8

Eldorado Springs, Boulder County9
Eoff Artesian Well, Archuleta County9
Florence Artesian Well, Fremont County9
Fremont Natatorium Well, Fremont County9
Geyser Warm Springs, Dolores County9
Glenwood Springs Area, Garfield County9
Hartsel Hot Springs, Park County9
Haystack Butte Warm Water Well, Boulder County 10
Hooper Aquaculture Well, Alamosa County 10
Hot Sulphur Springs, Grand County11
Idaho Hot Springs, Moffat County11
Juniper Hot Springs, Moffat County11
Lemon Hot Springs, San Miguel County11
Mineral Hot Springs, Saguache County11
Mount Princeton Hot Springs, Chaffee County12
County12
County12 Mullenville Warm Spring, Park County12 Orvis Hot Springs (Ridgeway) Ouray
County12 Mullenville Warm Spring, Park County12 Orvis Hot Springs (Ridgeway) Ouray County12
County

Shaws Warm Spring, Saguache County14 South Canyon Hot Springs, Garfield County15
Splashland Hot Water Wells, Alamosa County15
Steamboat Springs Area, Routt County15
Stinking Springs, Archuleta County15
Swissvale Warm Springs, Fremont County15
Trimble Hot Springs, La Plata County16
Tripp Hot Springs, La Plata County16
Valley View Hot Springs, Saguache County 16
Wagon Wheel Gap Hot Springs, Mineral County 16
Waunita Hot Springs, Gunnison County 16
Wellsville Warm Spring, Fremont County17
Summary17
Recommendations18
References18

FIGURES

- 1. Geothermal springs and wells of Colorado......4

TABLES

PLATE

1. Low temperature geothermal areas in Colorado, scale 1:1,000,000.in pocket

APPENDIX

Tables 1,3, and 4 printout of diskette database.

DISKETTE

Database on 3.5 in. HD DOS diskette.

- Table 1.Location of geothermal sources in
Colorado.
- Table 2.Geochemical analysis of geothermal
sources in Colorado (long list)
(milligrams/liter).
- Table 3.Geochemical analysis of geothermal
sources in Colorado (short list)
(milligrams/liter).
- Table 4.General information of geothermal
sources in Colorado.

ABSTRACT

Previous assessments of Colorado's low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992–1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the U.S. Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30°C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases.

For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992–1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978.

Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

INTRODUCTION

The first assessment of the geothermal resources of the State of Colorado was completed in 1920

by the Colorado Geological Survey with the publication of Colorado Geological Survey Bulletin 11, *Mineral Waters of Colorado*. Bulletin 11 contains chemical analyses of the state's mineral waters including the known geothermal waters and, also, has a section describing the utilization of the mineral waters.

All of Colorado's geothermal resources are considered to be low-temerature, that is, less than 90°C. The lower temperature is defined by the U.S. Department of Energy as 10°C above the mean annual air temperture at the surface (Reed, 1983). For this report a lower limit of 20°C was selected. The first modern lowtemperature geothermal assessment for the state of Colorado was completed during a period of time from about 1976 to 1983. That assessment was carried out by the Colorado Geological Survey through a funding program with the U.S. Department of Energy and the U.S. Geological Survey. The 1976 survey involved a sampling program conducted over an approximate 12 month period of 125 geothermal sources from 56 geothermal areas and resulted in the 1976 publication of Colorado Geological Survey Information Series 6, Hydrogeochemical Data of Thermal Springs and Wells in Colorado (revised 1993).

In 1978, the Colorado Geological Survey published Bulletin 39, *An Appraisal of Colorado's Geothermal Resources*, which contained descriptive information on the sites, including location, current usage, geological setting and an analysis of various geothermometers for each of the 56 geothermal areas of the state. Bulletin 39 utilized the analytical geochemical information presented in Information Series 6.

Several other site-specific geological and geophysical studies were performed by the Colorado Geological Survey up to 1983. Economic evaluations regarding the utilization of geothermal heat and energy for various sites were also completed during this time. All the pertinent publications are listed in the Reference chapter of this report.

The need for a new geothermal assessment is evidenced by the results of the current 1992–1993 low-temperature geothermal assessment. In Bulletin 39 which was published in 1978, there are 56 geothermal areas and 125 geothermal sites. The 1992–1993 survey lists 93 geothermal areas and 157 geothermal sites throughout the state. Over 380 chemical analyses, up from the 236 reports in 1976, were compiled from various sources in the construction of the database. Utilization of geothermal resources has changed over years. In some cases flow rates and temperature of the geothermal sources have changed since prior assessments. Several errors in location and description of geothermal springs from both the above described Colorado Geological Survey publications and the U.S. Geological Survey WATSTOR database were corrected.

The data collected and compiled for this survey are listed in Tables 1 through 4 and are recorded in four computer databases. A 1:1,000,000 scale map of the state (Plate 1) shows the location and ID number of each of the geothermal areas.

The 1992–1993 low-temperature geothermal assessment for Colorado was initiated in the fall of 1992 by the Colorado Geological Survey. Funding for this survey was provided by the U.S. Department of Energy. The program was administered by the University of Utah Research Institute in Salt Lake City, Utah and the Geo Heat Center at the Oregon Institute of Technology, Klamath Falls, Oregon.

DATA SOURCES

Data were compiled from a variety of sources including unpublished materials. The most important unpublished sources were the Colorado Department of Water Resources well permit files, the U.S. Geological Survey WATSTOR database, and analytical reports from private laboratories given to the principal investigator by geothermal source owners and operators.

The most important published source material includes: George et al., 1920, Colorado Geological Survey Bulletin 11; Barrett and Pearl, 1976, Colorado Geological Survey Information Series 6; and Barrett and Pearl, 1978, Colorado Geological Survey Bulletin 39.

The University of Utah Research Institute provided 10 new water analyses for each state for the current low-temperature geothermal assessment program. All 10 new analyses were completed for the Colorado portion of the program.

All geochemical data which maintained a cation-anion charge balance of \pm 15% were entered into the databases. Geothermal sources with only one analysis were entered regardless of the charge balance. All data entries, especially those with significant cation-anion charge balance errors, were checked by two separate operators. References for each analysis are recorded in the GTHCHM1 database.

DATA FORMAT

The data collected and compiled during this assessment is recorded on the enclosed diskette in Lotus 1-2-3, Dbase, and Arc Export formats. For loading and other information refer to the Read Me file on the diskette. For purposes of this program a geothermal area is defined as a geologically cohesive land area that may or may not contain several geothermal wells or hot springs. Generally an area is less than approximately 3 sq mi. A site is defined as an individual geothermal well or hot spring within an area.

Each geothermal area within the database has a unique ID number. Different sites within a geothermal area have unique area-site numbers. All the tables list the ID number, Site number, and Geothermal Source (Name). (See Appendix.)

Table 1 is a location database (GTHLOC); it describes the county, quadrangle map, section, township, range, latitude and longitude, and Universal Transverse Mercator grid references.

Table 2 contains the long form of the geochemical database(GTHCHEM1). All the geochemical and sample data collected during this survey is stored in this Table. There can be multiple entries of geochemical data for each site. Table 2 is not included in the Appendix because of its size. It is only available on the enclosed diskette.

Table 3 is the short form of the geochemical database(GTHCHEM2). It contains an abbreviated element list and has only one entry per site. Where multiple chemical analyses were available all the results were averaged to make just a single entry.

Table 4 contains the general information database (GTHGEN). It has information such as temperature, flow rate, type, references, and current usage for each geothermal site.

All the data in the project databases were entered by hand. Much of the data resided in Colorado Geological Survey Bulletins and Information Series and had never been entered into a computerized database before. The only other computerized database used in this project was the WATSTOR database compiled by the U.S. Geological Survey; however, all of this data was entered manually.

The enclosed diskette contains all the database files in a various formats. These files can easily be exported to several database manager applications. The following table lists all the important computer database information for the databases.

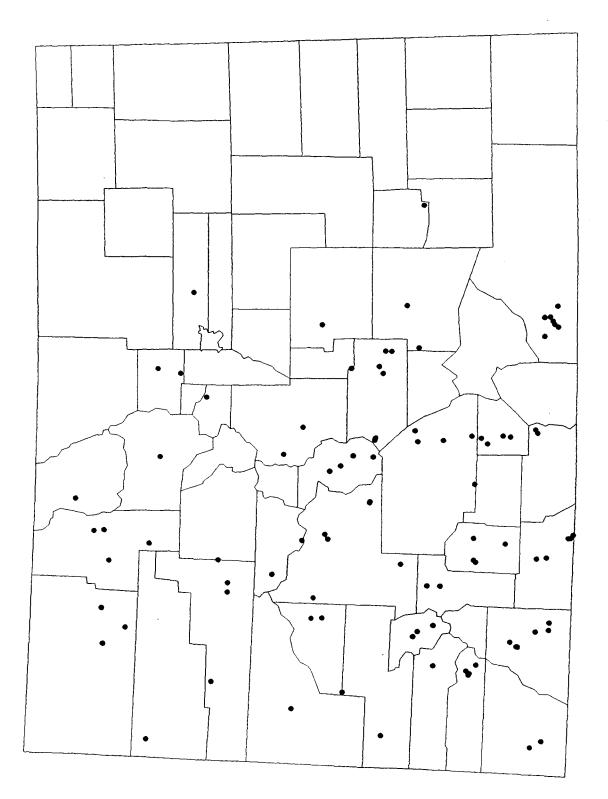
Table A. List of pertinent computer file data for the low-temperature geothermal assessment databases.

Table	Data- base Name	Infor- mation	No. of Fields	No. of Bytes
1	GTHLOC	Location	24	84,936
2	GTHCHEM1	Chemistry, long list	59	385,444
3	GTHCHEM2	Chemistry, short list	22	84,670
4	GTHGEN	General information	8	29,316

FLUID CHEMISTRY

The University of Utah Research Institute (UURI) provided 10 new water analyses for each state as part of the low-temperature geothermal assessment program. Because of time constraints a lower limit of 30°C was set on any geothermal spring or well to be visited in the field. Almost all of the geothermal sources greater than 30°C were visited. The temperature, pH, conductivity, flow rate and current usage for each site were recorded. Sites for a complete water analysis were selected on a subjective criteria of developmental significance and lack of recent or quality geochemical data. The 10 sites selected for new water analyses in Colorado are:

- ▼ Craig Warm Water Well
- ▼ Desert Reef (Florence)
- ▼ Dotsero, South
- ▼ Mt. Princeton (Hortense Well)
- ▼ Ouray (Pool or Box Canyon Spring)
- Routt (Strawberry)
- Steamboat Springs (Heart Spring)
- Waunita Hot Springs
- Juniper Hot Springs
- ▼ Pagosa Hot Springs (Big Spring)


The results of the new samples are included in Table 2 and have a reference number of 3. There were no new results that had serious implications for the prior known geochemistry of the geothermal areas.

Geochemical data derived from the U.S. Geological Survey WATSTOR database was entered into the current database; unfortunately, most of those reports do not have an analysis for HCO_3^{-1} or CO_3^{-2} which causes severe errors in the cation-anion balance. As most of these analyses are the only one for that particular site they have been retained in the database even though they do not balance within the specified limits.

DISCUSSION

The location of all the geothermal sites compiled during this assessment program is shown on Figure 1. The accompanying Plate 1 shows the location and geothermal area ID number. A frequency plot of all the geothermal temperatures from each site is shown in Figure 2. The greatest number of temperature measurements fall in the 25° to 40°C categories. There is another peak in the 51° to 55°C range.

The following section contains a brief discussion of the sites that were visited during the 1992–1993 geothermal assessment program. All the geothermometer estimates in the following section are derived from discussions and tables

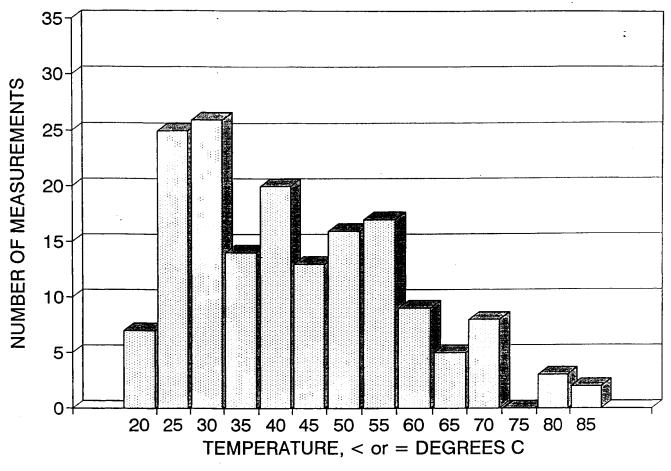


Figure 2. Frequency distribution of Colorado geothermal sources.

in Barrett and Pearl (1978). Some modification of suspect geothermometer estimates was made using the methods described by Michael Adams of UURI (personal communication, 1993).

ANTELOPE WARM SPRING, MINERAL COUNTY

The Antelope Warm Spring was visited in June of 1993. The spring issues into a concretelined cistern approximately 6 ft by 4 ft at ground level and 5-ft deep. The spring is 20 ft north of wooden building shaped like a quonset hut. Inside this building is a 20 ft by 30 ft swimming pool. Water from the spring was used to fill the pool.

Mr. Larry (Sonny) Dickerson, longtime owner of the property around the spring, indicated the pool had not been used for several years. The pool was used by family and friends, never commercially. Currently, the swimming pool building is used for storage by Mr. Dickerson. The pool is covered by a tarp and is nearly empty. Water from the Antelope Warm Spring is diverted into the pasture surrounding the spring. A valve and pipe system (in an advanced state of disrepair) can still divert most of the spring flow into the swimming pool if desired.

Flow from the spring was measured at 50 liters per minute which was four (4) times the rate measured by Barrett and Pearl (1976) in 1975. Mr. Dickerson is of the opinion that during the last five years flow from the spring has noticeably increased.

The most reasonable estimate of the subsurface reservoir temperature from a combination of geothermometers is 35° to 52°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Steven and Ratte, 1973).

BIRDSIE WARM SPRING, MINERAL COUNTY

There are five springs that issue from the toe of the slope just north of the road. All the flow enters a culvert and flows out to the Rio Grande. The most reasonable estimate of the subsurface reservoir temperature from a combination of geothermometers is 35° to 52°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Steven and Ratte, 1973).

BRANDS RANCH ARTESIAN WELL, JACKSON COUNTY

The Brands Ranch Artesian Well was visited in May, 1993. There is no longer any physical evidence of the well mentioned in Barrett and Pearl, 1978. The spring bubbles up into a 15-ft diameter, 2.5-ft deep pool. There are no facilities in this somewhat remote area. The pool appears to get some occasional use from hunters, campers, fisherman and local people.

The collapsed well that makes the hot spring is the Horton 2 Brands well drilled in 1953 to a total depth of 1,075 ft. The lowest formation penetrated is the Morrison Formation. The hot waters probably come from the Dakota Sandstone. The most reasonable estimate of the subsurface reservoir temperature from a combination of geothermometers is 42° to 55°C (Hail, 1965; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

BROWNS CANYON WARM SPRINGS, CHAFFEE COUNTY

An attempt to visit this site was made in July, 1993. Several minor seeps were noted in the area described by Dick (1976) and Barrett and Pearl (1978); however, these seeps had a temperature less than 20°C (Scott et al., 1975; Barrett and Pearl, 1976; Dick, 1976; Barrett and Pearl, 1978).

CANON CITY HOT SPRINGS, FREMONT COUNTY

Canon City Hot Springs emerges from a corroded casing in the northeast corner of the front yard of a house that faces the nearby Arkansas River. Nothing remains of the "classy" thirtyeight room Royal Gorge Hotel and Spa built adjacent to the Spring in the 1870s. Fifteen years ago the current owner of the property filled in the swimming pool supplied by the spring.

Water from the spring is now used to irrigate some of the owner's and a neighbor's front yard landscape shrubs. When the spring was visited in June of 1993 the temperature of the spring was 40° C. The flow varied from 9 to 142 liters per minute (George et al., 1920; Taylor et al., 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

CEBOLLA HOT SPRINGS, GUNNISON COUNTY

The Cebolla Hot Springs near the village of Powderhorn was visited in May 1993. The cabins and bath houses appeared to be still in useable and working condition; however, there was no one around to give us any information about present day usage. There are still two bath houses (George et al., 1920; Hedlund and Olson, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

CEMENT CREEK WARM SPRINGS, GUNNISON COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 30° to 60°C (Barrett and Pearl, 1978).

CLARK ARTESIAN WELL, PUEBLO COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 25° to 60°C (Barrett and Pearl, 1978).

COLONEL CHINN HOT WATER WELL, DELTA COUNTY

This well was visited in November, 1992. The well water is piped through a closed wellhead to a manifold and then to stock tanks about 200 ft away. An accurate indication of the temperature could not be obtained; however, the property owner indicated that the water flows all the year without freezing (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Hail, 1972).

CONUNDRUM HOT SPRINGS, PITKIN COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 50°C (Barrett and Pearl, 1978)

COTTONWOOD HOT SPRINGS, CHAFFEE COUNTY

At the time of our visit in May 1993, the Jump Steady Resort was renamed to the Cottonwood Hot Springs Inn. The Inn has guest cabins and hot spring spas in a rustic environment. Hot water which is used for bathing, domestic heating, and drinking purposes comes from an enclosed cistern.

Another set of nearby springs and a well are used by the Merrifield family for a greenhouse complex, domestic heating and bathing, and drinking.

The Cottonwood Hot Springs is located at the contact of the Tertiary Mount Princeton Quartz Monzonite and Precambrian migmatitic gneisses to the south. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 100° to 110°C (George et al., 1920; Scott, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

CRAIG WARM WATER WELL, MOFFAT COUNTY

The Craig Warm Water Well is mislocated in Colorado Geological Survey Bulletin 39. The correct location is shown on Plate 1 and listed in Table 1 of this report. The Craig Warm Water Well was visited in November 1992. At that time the wellhead was in poor condition with hot water leaking from various places. There was no evidence of any activity or recent use of the well. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is approximately 100°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

CROWLEY RANCH RESERVE WELL, ARCHULETA COUNTY

The Crowley Ranch Reserve Well was drilled as an oil and gas test by the Phillips Oil Company in 1943. The well intersected the Dakota Formation at 240 ft, Morrison Formation at 520 ft, Todilto Limestone at 1,200 ft, Wingate Sandstone at 1,308 ft, Chinle Formation at 1,508 ft and Precambrian quartzite at 1,515 ft. The well is reported to have begin flowing hot water at 1,558 ft. The well was abandoned at 1,625 ft and deeded to the Crowley's for irrigation purposes.

There is no longer any physical evidence of the well. Water bubbles up into an 8 ft diameter, 5-ft deep pool. During a visit to the site by CGS personnel in June, 1993, all the water from the well was diverted to the east into an irrigation ditch. Three hundred feet from the well some of the water is taken from the ditch to fill a just constructed hot tub. The remainder of the water in the ditch is allowed to flow into the Jaw Bone Canyon.

From 1943 until 1992 the 48°C well water was used for pasture irrigation. Now, 534 acres of the Crowley family holdings around the well are in a developed recreational community called the Crowley Ranch Reserve. Property owners are given common ownership of a proportion of the Reserve's land. One of the amenities touted by the developers of the property is the geothermal hot tub referred to in the above paragraph.

DEGANAHL WARM WATER WELL, ROUTT COUNTY

The Deganahl warm water well was drilled as an oil test in Cretaceous rocks by Fullerton Leasing Company of California in October, 1967. Because the well encountered only warm water, the company turned the well over to the land owner, Mr. Deganahl. He completed the well at a total depth of 2,500 ft in January, 1968 as a warm water well. The original flow of the well was some 11,900 liters per minute at the time of drilling . Caving problems while installing the casing reduced the well flow to 4,800 liters per minute. The temperature of the water is 43°C and the well had a shut in pressure of 200 psi. In 1981, the Colorado Division of Wildlife applied for a permit to drill a geothermal well at their Finger Rocks Trout Hatchery facility 3 mi east of the Deganahl well. The permit application was denied by the State Water Engineer. The analyses of the Deganahl well water included in Table 2 were performed as part of the Division of Wildlife's feasability study on the proposed project.

The Deganahl well was visited in May, 1993. The owners of the well make only occasional use of the well for bathing purposes. The hot water is flowing at approximately 1,500 liters per minute out of the wellhead and into Watson Creek. A second well is located at a bearing of S33E and a distance of 225 ft from the original well. The conductivity, pH, and temperature of the water from the second well are similar to the original well. There is no information on the depth or history of the second well. The flow rate of the second well is about 100 liters per minute.

The geothermal waters are accounted for by a normal geothermal gradient and probably issue from either the Dakota Sandstone or sandstones within the Frontier Formation. The well was spudded into the Mancos Shale (Kucera, 1962).

DESERT REEF (FLORENCE) HOT SPRINGS, FREMONT COUNTY

The Desert Reef Beach Club is a "Natural Outdoor Hot Springs". The facilities consist of a changing house and a 20 ft by 30 ft bathing pool fed by an old oil test well, the Conoco Huffman No. 1 well drilled in 1966. The well penetrated Precambrian granite at 3,948 ft and has a total depth of 4,240 ft. Later the well was plugged back to 1,096 ft and produces 54°C water at a permitted flow of 1,100 liters per minute from the Morrison and Dakota sandstones.

DEXTER WARM SPRINGS, CONEJOS COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 20° to 50°C (Barrett and Pearl, 1978).

DOTSERO WARM SPRINGS, EAGLE COUNTY

The Dotsero Warm Springs were visited in May, 1993. The springs and adjacent buildings described and pictured by Barrett and Pearl, 1978 on the northwest side of the Colorado River are no more. Construction activities on Interstate Highway 70 have destroyed the old buildings and the hot springs have been covered over by fill material for the new highway. There are some monitor wells in the area of the old springs at the river's edge; however, there was no sign of flow from these springs.

The springs on the south-east side of the river are still intact and flowing directly into the Colorado River at the base of a fill for the railroad tracks. The outflow quantity is impossible to measure; however, the waters were very saline to the taste. A sample of the water was taken for chemical analysis. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is approximately 100°C (George et al., 1920; Bass and Northrop, 1963; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

DUNTON HOT SPRINGS, DOLORES COUNTY

Dunton Hot Springs is near the old mining town of Dunton. There are several old cabins around the Dunton Hot Springs. In the past few years a private group has tried to run a primitive resort around the Hot Springs. Unfortunately, they are no longer in business and all the cabins, lodge, and bathhouse are falling into disrepair. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 50° to 70°C (Bush and Bromfield, 1966; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

DUTCH CROWLEY ARTESIAN WELL, ARCHULETA COUNTY

The Dutch Crowley Artesian well was visited during June of 1993. The site's 70°C water is flowing from the top of surface casing which extends about 2 ft above ground level. The well was spudded as an oil and gas test in July 1951 by a J. R. Butler from Houston, Texas. The wildcat encountered two gas-and-water zones at approximately 800 and 1,200 ft in the Morrison Formation. The well intersected the Entrada Sandstone at 1,500 ft and flowed fresh water with a temperature of 48°C. The well was bottomed at 1,741 ft (Osterhoudt, 1978). The hole was deeded by the operator to the Crowleys for a water well.

Barrett and Pearl's narrative on how to get to the well in their 1978 CGS Bulletin 39 is not accurate. The correct instructions are to read; proceed 3.8 mi southeast from the Chromo Post Office on U.S. Highway 49 to where a dirt road leads east. Turn left on this road and drive about ¹/₈ of a mile. The well is about ³/₄ of a mile due east of this parking spot on the south side of a boggy meadow.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 80°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Osterhoudt, 1978).

ELDORADO SPRINGS, BOULDER COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 26° to 40°C (Barrett and Pearl, 1978).

EOFF ARTESIAN WELL, ARCHULETA COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 60°C (Barrett and Pearl, 1978).

FLORENCE ARTESIAN WELL, FREMONT COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 34° to 50°C (Barrett and Pearl, 1978).

FREMONT NATATORIUM WELL, FREMONT COUNTY

The 70 by 150 ft swimming pool supplied by the warm water well is now used only by the

owners. The pool and concrete decking is in disrepair. The owner indicated that he and his wife closed the pool for public bathing 30 years ago because they could not afford to be in compliance with newly enacted public swimming pool water standards for chlorination. When this site was visited during June of 1993 the owner was using a portion of the warm well water to irrigate a sizeable vegetable and berry garden.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 35° to 50°C (Barrett and Pearl, 1976; Scott, 1977; Barrett and Pearl, 1978).

GEYSER WARM SPRINGS, DOLORES COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 60° to 120°C (Barrett and Pearl, 1978).

GLENWOOD SPRINGS AREA, GARFIELD COUNTY

The Glenwood Springs area is the state's premier bathing spa area. There are several hot springs in the area around Glenwood Springs but only those on the north side of the Colorado River have been developed. No new analyses were taken from the Glenwood Springs area during this study. The Vapor Caves Spa donated a copy of a private laboratory report on the chemistry of their waters (George et al., 1920; Bass and Northrop, 1963; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

The chemistry of the geothermal waters in the Glenwood Springs area is too complex for an accurate estimate of subsurface reservoir temperatures. The subsurface temperature is, probably, not much higher than the surface temperature of the hot springs, approximately 45° to 50°C (Barrett and Pearl, 1978).

HARTSEL HOT SPRINGS, PARK COUNTY

The remains of the Hartsel Hot Springs were visited in May 1993. The bath house that is pictured in Barrett and Pearl, 1978 is no longer standing, though some flow from the hot springs is still coming out of a pipe from the building's foundation. All the facilities of the Hartsel Hot Springs are unused and in a state of decay and disrepair. The flow was difficult to measure but it appears to be greater than 300 liters per minute.

There is a popular opinion based upon rumor and general tourist literature that the geothermal water from the Hartsel Hot Springs is highly radioactive (Cahill, 1983). This opinion appears to based upon an article (Howland, 1936) which describes a barite occurrence in the Pennsylvanian-Permian Maroon Formation about 2 mi southwest of Hartsel Hot Springs. The author states that there is an unusual bluecolored barite at this locality and he conjectures that the blue coloration was caused by radiation damage. As further evidence for his thesis, Howland states without providing any data or analysis that the Hartsel Hot Springs are highly radioactive based upon analyses done by the Colorado Geological Survey (George et al., 1920). However, the mean of 60 hot springs analyzed in the 1920 CGS study is 0.139 picocuries radon per liter, ranging from a trace, 0.001, to 2.64 picocuries per liter. The value listed for the Hartsel Hot Springs is 0.154 picocuries radon per liter, only slightly above the mean.

A more recent study of the uranium concentration in natural waters of South Park (Sharp and Aamodt, 1976) indicates that the uranium concentration, as analyzed by fluorometric methods, in a filtered and acidified water sample from the Hartsel Hot Springs was 0.30 parts per billion (ppb) uranium. Two other analyses of the untreated sample were 0.98 and 0.10 ppb uranium. Samples from 16 springs in the South Platte drainage area within the South Park region which includes the Hartsel Hot Springs had values that ranged from 0.21 to 292 ppb uranium with an average of 22.6 ppb uranium. The average of 35 surface water samples in the same drainage area is 3.3 ppb uranium. The uranium concentration of 0.3 ppb at the Hartsel Hot Springs is well below the regional average of 22.6 ppb for the South Platte drainage in South Park.

It appears that the hot springs at Hartsel are associated with the South Park or Santa Maria Faults and/or the contact of the Morrison Formation and Precambrian crystalline rocks. Precambrian granites in the region around Hartsel are known to possess anomalously high geothermal gradients. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 55° to 85°C (George et al., 1920; Ettinger, 1964; Barrett and Pearl, 1976; Barrett and Pearl, 1978; McCarthy et al., 1982[b]).

HAYSTACK BUTTE WARM WATER WELL, BOULDER COUNTY

This well and surrounding area was visited in May, 1993. Warm water is still flowing from the wellhead into a 25-ft diameter pool which at the present time is used mostly by game birds as a watering and bathing pool. The pool is undeveloped and a significant amount of discarded machinery and other junk surround it. The temperature of the well has declined from 28°C in 1976 (Barrett and Pearl, 1976) to 20°C in May 1993. The source of the hot water is conjectural; however, the location of the well on the Haystack Mountain Anticline indicates that structures along the axis of the anticline probably helped in circulating waters through the underlying Pierre Shale to depths adequate enough for heating to the observed temperatures (Trimble, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

The estimate of the subsurface reservoir temperature made by Barrett and Pearl (1978) from a variety of geothermometers was 50°C. The surface temperature of the spring has declined almost 30% since 1978. It may be reasonable to expect a similar decline in the subsurface reservoir temperature estimate to approximately 35° to 40°C.

HOOPER AQUACULTURE WELL, ALAMOSA COUNTY

Access to the Hooper Aquaculture Well is south from Hooper on Colorado Highway 17 for 2.7 mi to the intersection with Nine Mile Lane. Turn left (east) on this road and proceed for 0.2 mi to the site.

The subject well was drilled as an irrigation well by E. F. Lambert in 1963. Total depth of the well was 2,063 ft. A 12 $^{3}/_{4}$ inch casing was run from surface to 922 ft and 9 $^{3}/_{8}$ inch casing was run from 922 to 2,063 ft. The well casing is

perforated from 1,242 ft to total depth. The driller's log indicates the perforated section is an interbedded mixture of sand, gravel and brown clay. The well according to State of Colorado Division of Water Resources records initially flowed 8,955 liters per minute.

About ten years ago Mr. Erwin Young of Alamosa bought 80 acres of land comprising the north half of the northwest quarter of Section 22, T. 40 N., R. 10 E.. The Lambert (nee) Hooper Aquaculture well is located in the NW NW NW of this section was included in the purchase. After the purchase Mr. Young developed his acreage into a fish and alligator farm. The Hooper Aquaculture Well which now flows at about 2,600 liters per minute at a temperature between 30.2° to 31.3°C is about the perfect water temperature for the African perch or "Tilipia" that he is rearing at the site.

During our visit to the site in June of 1993, water leaking around the casing of the Hooper well was measured at 31.3°C. Currently, all the commercial fish growing ponds are out of doors. Mr. Young, however, is in the middle of a project to enclose a number of tanks inside a metal shed to increase production in winter months. He also is developing an additional Tilipia rearing unit near Alamosa whose ponds will be supplied from a couple of (unknown) geothermal wells of a temperature nearly matching the Hooper Well.

HOT SULPHUR SPRINGS, GRAND COUNTY

The Hot Sulphur Springs Resort is now only open during the summer and fall months. At the time of our visit in June 1993 the resort complex was for sale. The springs appear to be controlled by a north-south trending fault in the Dakota Formation and the Middle Park Formation.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 75° to 150°C (George et al., 1920; Izett, 1968; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

IDAHO HOT SPRINGS, CLEAR CREEK COUNTY

This site was not visited during this program.

The chemistry of the geothermal waters in the Idaho Springs area is too complex for an accurate estimate of subsurface reservoir temperatures.

JUNIPER HOT SPRINGS, MOFFATT COUNTY

Juniper Hot Springs was visited in November, 1992. At that time the buildings and other facilities associated with the resort were run down and in a general state of disrepair. Hunters who were camped there informed me that the resort was closed in 1989, more or less permanently, by the elderly owner who lives in nearby Craig. The source springs are enclosed in a locked building. A one-inch pipe carries hot water from the building for a distance of about 8 ft and discharges into a pool. The sample for this study was taken at the discharge point.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 50° to 75°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

LEMON HOT SPRINGS, SAN MIGUEL COUNTY

The Lemon Hot Springs consists of a 20-ft diameter pond at the mouth of an old adit. Several buildings having the appearance of private residences surround the pool and tunnel. The waters feeding the hot springs pool are draining from the tunnel. At the time of my visit in July 1993, the pool was choked with weeds and algae. The owners of the hot springs could not be contacted concerning the status of the pool and springs (George et al., 1920; Bush et al., 1959; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

MINERAL HOT SPRINGS, SAGUACHE COUNTY

An attempt to visit this site was made in June, 1993; however, we were denied access to the area. According to the guard at the site the owner is planning on developing the area and is very secretive about his plans. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 90°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

MOUNT PRINCETON HOT SPRINGS, CHAFFEE COUNTY

Because of the presence of hot geothermal water, the area around Mount Princeton Hot Springs has been heavily developed since the turn of the century and has been the site of various resorts, hotels, homes, and youth camps. The springs around Mount Princeton are the hottest in the state. The Hortense Hot Spring which services the Silver Cliff Ranch, a Christian youth camp, has a temperature of 85°C. The water is used for bathing, domestic uses and drinking purposes. A resort, several residences, youth camps, and a greenhouse utilize the hot water from several springs and wells in the area. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 100° to 130°C.

The state Division of Wildlife has a trout rearing unit at the Chalk Cliffs hatchery some 2 mi east of the Mt. Princeton Hot Springs. This unit was purchased by the state in 1948 but has been in existence since the 1920s. The 18°C water in the Chalk Creek is used in the trout rearing unit to advantage. Growth times for rainbow trout from fingerlings to a stocking length of 10 inches are decreased from a normal 18 to 22 month period to 12 months because of the warm water (George et al., 1920; Scott et al., 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

MULLENVILLE WARM SPRING, PARK COUNTY

The area around this spring, also known as Rhodes Warm Spring in the earlier literature, has been developed as a subdivision called "Warm Springs Ranch". Below the springs the outflow has been channelized by a boulder and cobble drain. The warm water goes to some fishing ponds on the subdivision. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 25° to 35°C (Tweto, 1974; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

ORVIS HOT SPRINGS (RIDGEWAY), OURAY COUNTY

The Orvis Hot Springs resort utilizes geothermal water from a tufa mound just to the southeast of the resort buildings, from a well pit dug in 1991, and from springs which feed directly into a 35-ft diameter natural pool. The natural pool, used mostly for bathing in the 41°C water has a privacy fence and is surrounded with a wooden deck. The resort also has private rooms for bathing and massage and hydrotherapy sessions.

Part of the hot water from the tufa mound is being diverted to a greenhouse and aquaculture project about 1,000 ft to the south. The owner has ambitious plans to develop this project but at this writing, July 1993, it is still under construction (George et al., 1920; Luedke and Burbank, 1962; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

OURAY AREA, OURAY COUNTY

The City of Ouray has taken an active role in developing the geothermal resources of the immediate vicinity. In 1989, the City drilled two shallow wells, OX-2 and OX-6, in the City Park just to the south of the City Swimming Pool (Formerly known as the Radium Hot Springs Pool). These two wells are 90-ft deep and produce 48°C water which goes directly to the pool. At the time of my visit in July, 1993 one of the wells was temporarily shut-in. The pool still gets the bulk of its hot water via a pipeline from the Box Canyon Hot Springs.

Three motels in the City of Ouray are using geothermal waters from various sources for spas and space heating. The Twin Falls and Box Canyon motels are using geothermal waters from springs located at the motel sites, and the Manganese Mine at the mouth of Box Canyon, and from hot springs in Box Canyon. The Weisbaden Motel uses geothermal waters for its pool and space heating from a hot spring reservoir under the motel and from an underground Vapor Cave which has three natural hot springs issuing into it. The waste geothermal water from the Weisbaden Motel is used to heat the sidewalks and driveways of the City of Ouray municipal buildings about 200 ft down the hill. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 90°C (George et al., 1920; Luedke and Burbank, 1962; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

PAGOSA SPRINGS, ARCHULETA COUNTY

These springs were visited during June of 1993. The main spring, the Great Pagosa, situated a few hundred feet southwest of the Spring Inn is enclosed by a fence and posted with "No Trespassing" signs. The City of Pagosa Springs has recently built a viewing area on the east side of the spring which provides a good place to observe and photograph the spring. The city has placed four poster boards in the viewing area which describe the: (1) History of the Great Pagosa Hot Springs, (2) Geologic Requirements for a Hot Spring, (3) The Stratigraphic Section at Pagosa Springs, and (4) Distribution of the Pagosa Springs Geothermal Heating System. The poster boards are of good graphic quality and the historical and scientific information is accurate and well written for lay person understanding.

The Spring Inn is in the final phase of a major alteration of their pool area. When finished they will have a cluster of seven soaking pools of different sizes and water temperature ranging from about 35° to 45°C. Individual pools will be able to comfortably accommodate from 8 to 30 bathers.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 80° to 130°C (George et al., 1920; Hail, 1971; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

PARADISE HOT SPRING, DOLORES COUNTY

This hot spring is located 2.5 mi south of the Dunton Hot Springs along the West Dolores River. At the time of my visit in July 1993, the springs were not open to the public. The owner of the property uses the warm springs and bath house for his own purposes which is no change from the previous inventory in 1976 (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

PENNEY HOT SPRINGS, PITKIN COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 60° to 90°C (Barrett and Pearl, 1978).

PINKERTON HOT SPRINGS, LA PLATA COUNTY

The rerouting of the U.S. Highway 550 has destroyed two of the four hot springs that made up the Pinkerton Hot Springs. The two remaining springs, the Mound Spring and the Little Mound Spring, are located on the west side of the highway just a few feet from the pavement. The hot water from both springs is piped out to a drain along side of the highway and then to the natural drainage system. There has been some limonite-stained tufa build up at the site of the two remaining springs. The destruction of the two remaining springs has left the Colorado Timberline Academy (formerly the Golden Horseshoe Resort mentioned in Barrett and Pearl, 1978) without hot water for its pool.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 75° to 125°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

PONCHA SPRINGS, CHAFFEE COUNTY

The Poncha Hot Springs were visited in May, 1993. The facilities around the springs are currently maintained by the City of Salida. Since 1938 most of the water from the springs is transported by pipeline to the municipal swimming pool in Salida. The inlet temperature at the pool is 47 to 50°C. Currently, the Boy Scouts of America use the facility in the summer months as a base camp. There is no longer any commercial usage of the facilities.

According to the caretaker at the site there are numerous springs which over the years have fallen into a state of disrepair. Currently, there are efforts to find and repair some of the old cisterns and pipelines in order to improve the quantity and temperature of the flow. The Poncha Hot Springs area is marked by the presence of several fossil and a few active tufa mounds that are associated with the hot springs. There are significant aprons of travertine that occur downslope of the area of hot springs.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 115° to 145°C (George et al., 1920; Van Alstine, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

RAINBOW HOT SPRINGS, MINERAL COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 50°C (Barrett and Pearl, 1978).

RANGER WARM SPRINGS, GUNNISON COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 30° to 60°C (Barrett and Pearl, 1978).

RICO, DOLORES COUNTY

Two of the four diamond drill holes noted by Barrett and Pearl, 1978 are still uncapped and flowing hot water. The Geyser Hot Water Well is flowing and bubbling with a slight geyser effect. It has built a substantial tufa mound, approximately 6-ft high, and an semi-circle shaped apron, approximately 25 ft in diameter, around the drill hole. Limonite staining is prominent in the tufa. The waters remain unused. The chemistry of the geothermal waters in the Rico area is too complex for an accurate estimate of subsurface reservoir temperatures (George et al., 1920; McKnight, 1974; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

ROUTT (STRAWBERRY) HOT SPRINGS, ROUTT COUNTY

The Strawberry Hot Springs is in the process of

development as a commercial enterprise. Don Johnson of Steamboat Springs has owned the property since 1982. In the ten years since Johnson has owned the property he has deepened four of the pools and imported sand for the bottoms, built wooden decks and walkways, built four rustic cabins, and hired a gardener. At the time of my visit in November 1992, a massage house; a bath house with showers, toilets, and heat; and another cabin were under construction.

Recent geological mapping (Snyder, 1980) demonstrates that the Strawberry Hot Springs are hosted by an Proterozoic felsic gneiss and amphibolite. Younger granitic pegmatites are also found in the immediate area. A northtrending normal fault with an adjacent zone of pervasive epidote-chlorite alteration also occurs in the immediate area.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 125° to 175°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Snyder, 1980; Pearl et al., 1983).

SAND DUNES POOL HOT WATER WELL, SAGUACHE COUNTY

Hot water for the swimming pool comes from a 4,400-ft deep well located just to the south of the pool. The pool is no longer open to the public; however, it is in good shape and is used by the family living on the premises. An experimental project for growing catfish using the geothermal water has been abandoned for many years (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

SHAWS WARM SPRING, SAGUACHE COUNTY

The site was visited during June of 1993, however, access was not available. Sampling and measuring of water was achieved where the spring waters leave the swimming pool.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 30° to 60°C (Barrett and Pearl, 1976; Lipman, 1976; Barrett and Pearl, 1978; Bond, 1981).

SOUTH CANYON HOT SPRINGS, GARFIELD COUNTY

These three undeveloped springs were visited in May, 1993. The hot springs have had several periods of usage and limited development followed by a closing of the primitive facilities by local governments. At the present time the hot springs are channeled into two pools dug into the dirt. There is obvious evidence of usage of the springs by bathers. The hot waters are associated with the Dakota Sandstone. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 130°C (Bass and Northrop, 1963; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

SPLASHLAND HOT WATER WELLS, ALAMOSA COUNTY

The Splashland Pool is served by two wells that are 40 ft apart and 2,800 ft deep just to the west of the pool. In the winter when the pool is closed, the flow of the wells is used for space heating and domestic hot water in the surrounding ranch buildings. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 100°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

STEAMBOAT SPRINGS AREA, ROUTT COUNTY

Although there are several springs in the vicinity of the town of Steamboat Springs, only the Heart Spring has been used as a commercial hot bathing spring. The other springs in this area, which include the famous Steamboat Spring, have temperatures which vary from 14° to 19°C, too low to be considered as a geothermal resource in this study.

The Heart Spring is currently used for bathing within the Steamboat Springs Health and Recreation Association facility, a modern well-appointed, health club which includes an olympic size lap pool, tennis courts, weight room and exercise areas. It is difficult to obtain an accurate temperature measurement at the spring outlet; however, the Heart Pool had an estimated temperature of 36.4°C at the time of my visit in November, 1992. According to the Office Manager, Linda Johnson, the flow rate varies from about 300 to 750 liters per minute. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 100° to 140°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978; Snyder, 1980; McCarthy et al., 1982(a); Pearl et al., 1983).

STINKING SPRINGS, ARCHULETA COUNTY

Stinking Springs was visited in June of 1993. Warm water emerges in several places in a 1,500-ft stretch along the south bank of the Navajo River and north of the graded dirt road that parallels the river from Chromo to the springs and beyond. This area is very marshy and individual flows from points of emergence is very small.

The spring with the largest flow is south of the road. Barrett and Pearl (1976) sampled the water from this "main" Stinking Spring source in 1975 and found the temperature to be 27°C with a flow of 106 liters per minute. Our visit in 1993 found the temperature to be 25.4°C with a flow rate of 132 liters per minute.

The main spring bubbles up into a 20-ft diameter by 3-ft deep pool. This "soaking pool" seems to be a recent development or alteration to the spring. The spring is on property is owned by a newly (1992) formed recreational housing development called Crowley Ranch Reserve. It is assumed that they are responsible for the pool construction at this previously undeveloped and unused spring.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 60°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

SWISSVALE WARM SPRING, FREMONT COUNTY

This site was visited during June of 1993. Barrett and Pearl (1978) described the springs as being unused in 1978 and that is still the case. Sometime in the interim between the two site visits, a 25 ft x 15 ft x 4-ft deep soaking pool was dug about 50 ft from where Spring F issues at the surface. All the flow from this spring was diverted to the pool before running into the nearby Arkansas River. The pool is now filled with moss and algae. It would appear no one has used this pool for soaking recently. The spring is on private property and posted for no trespassing. No one currently resides on the property.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 35° to 50°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

TRIMBLE HOT SPRINGS, LA PLATA COUNTY

The Trimble Hot Springs lies within the well developed Trimble Hot Springs Resort complex. The actual springs now have only a meager flow of 8 to 12 liters per minute. The resort pools and spas are served by a well [mistakenly called the Tripp Hot Springs well in Barrett and Pearl (1978) and Barrett and Pearl (1976)] which is 150-ft deep and contains a submersible pump at 35 ft. The well is pumping at about 1,000 liters per minute. A new bath house complex was built in 1988. The grounds around the pools are well maintained. At the time of our visit in July, 1993 the resort had a good crowd.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 45° to 70°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

TRIPP HOT SPRINGS, LA PLATA COUNTY

The Tripp Hot Spring was mistakenly located at a well site 200-ft north of the Trimble Hot Spring by Barrett and Pearl (1978). The actual Tripp Hot Spring is located about ³/4 mi north of Trimble, near the mouth of Tripp Gulch and consists of a small natural pool, 25 ft x 10 ft x 5 ft deep. It is in the backyard of a private residence and has not been used for many years. The water currently flows off the property into a culvert (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

VALLEY VIEW HOT SPRINGS, SAGUACHE COUNTY

This site was visited during June of 1993. The site characterization in Cahill (1983) essentially

catches the ambiance of this site. The amenities are about as he described in 1982 with the added note that the shower and bathroom facilities are now completed and that the site now has telephone service. The springs serve five soaking pools and one swimming pool.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 50°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Cahill, 1983).

WAGON WHEEL GAP HOT SPRINGS, MINERAL COUNTY

Barrett and Pearl (1978) lists the location of the Wagon Wheel Gap Hot Springs as being in the SESE of Section 35, T. 41 N., R. 1 E.; Spar City 7.5 min. quadrangle map. In actuality, the Wagon Wheel Gap 4UR Hot Spring is in the NWNE of Section 2, T. 40 N., R. 1 E.; Lake Humphreys 7.5 min. quadrangle map. The Wagon Wheel Gap CFI Hot Spring is in the SWNE of Section 2, T. 40 N., R. 1 E.; Lake Humphreys 7.5 min. quadrangle map.

During a site visit on June of 1993, the 4UR Dude and Guest Ranch ownership was building a new deck and swimming pool north of the old bath house which will utilize waters from the 4UR Hot Springs.

The CFI Spring issues into an old bath tub that is by the spring which guests or employees of the ranch can fill with a bucket. The 65°C spring water must be mixed with the icy water from the adjacent Goose Creek to achieve the right temperature for a soak.

The chemistry of the geothermal waters in the Wagon Wheel Gap area is too complex for an accurate estimate of subsurface reservoir temperatures (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

WAUNITA HOT SPRINGS, GUNNISON COUNTY

The Waunita Hot Springs was visited in May 1993. The upper Waunita Hot Springs is a welldeveloped and appealing guest ranch. Waunita Hot Springs has been a popular tourist attraction since the turn of the century. The waters from the springs are used in the swimming pool for space heating the ranch and guest cabins, and for drinking purposes. The waters at Waunita are among the hottest in the state with an immersed temperature of the spring "A" in the gazebo of 77°C. A sample of the water from the gazebo spring was taken for chemical analysis. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 140° to 150°C.

The lower Waunita Hot Springs are approximately a half mile from the upper Waunita Hot Springs. All the bath houses, gazebos, cisterns, and springs at the lower springs are unused and in a state of disrepair. There is only a foot path to the lower Waunita Hot Springs. The water temperature, apparent quality (conductivity), and flow are about the same as seen at the upper springs. The most reasonable estimate of the subsurface reservoir temperature of the lower Waunita Hot Springs is approximately 130°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978; Zacharakis, 1981).

WELLSVILLE WARM SPRING, FREMONT COUNTY

This spring was visited during June of 1993. The concrete ponds supplied by the Wellsville Warm Spring were used for the raising of tropical fish starting some time around the middle 1960s. They are still in good condition and filled with warm spring water. However, the business was closed in 1987 because of the failing health of the owner who had run the fish farm for some 20 years.

The brother-in-law of the fish farmer now lives on the property. He indicated that the only use of the ponds supplied by the spring was for private bathing and swimming.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 35° to 50°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

SUMMARY

The 1992–1993 low-temperature geothermal assessment program added 10 new chemical

analyses to the geochemical database of the state's geothermal waters. Other sources of geochemical data were reviewed and all good quality, that is less than 15% cation-anion balance error, geochemical analyses were entered into the long form geochemical database, Table 2. Certain areas with higher than 15% cationanion balance were left in the database because they were the only analysis for an area or site. Usually the most significant errors in the cation-anion balance were found in the U.S. Geological Survey WATSTOR database and are due to a missing HCO₃ analysis.

Several corrections were made to locations and names of hot springs and wells described in the older literature. The Colorado Geological Survey Information Series 6 (1976) was updated during 1993 and the correct locations were entered into the revised publication and the database for this assessment. Corrections were also made to several location entries in the U.S. Geological Survey WATSTOR database.

A summary of the results of the 1992–1993 geothermal assessment and a comparison to the the 1976–1978 geothermal assessment are shown in the following table:

Table B. Summary of the results of the 1993 Low-Temperature Geothermal Assessment Program compared to the 1976–1978 goethermal assessment.

Item	1993 Assess.	1976–78 Assess.	% Change
Geothermal areas	93	56	+66
Geothermal sites	157	125	+26
Geochemical Analysis	382	236	+62
Sites of direct heat utilization	64	64	0
Sites of district heat use	20	?	
Sites of greenhouses, aquaculture	4	?	

RECOMMENDATIONS

The current assessment indicates that several areas in the state continue a long history of substantial utilization of their geothermal resources. The prime areas include Glenwood Springs, Idaho Springs, Steamboat Springs, Pagosa Springs, Mount Princeton, and Ouray. All of these areas, at the minimum, utilize the geothermal resources for swimming pools and spas. Some areas such as Ouray and Pagosa Springs utilize geothermal heat for space heating in municipal and other private buildings. There are other areas in the state that are collocated with or near population centers and are on the fringe of geothermal development. That is, they have had some development of their geothermal resources; however, there are indications that geological and geophysical studies may be used in a Second Phase geothermal assessment to increase the geothermal area and spur development in these areas. The geothermal areas that are candidates for a Second Phase are (not listed in any order of importance):

- 1) Trimble Hot Springs, La Plata County,
- 2) Orvis Hot Springs, Ouray County,
- A large area southeast of Pagosa Springs along the Archuleta Antiform, Archuleta County,
- 4) Eastern San Luis Valley, Saguache and Alamosa Counties,
- 5) Rico and Dunton Hot Springs, Dolores County,
- 6) Cottonwood Hot Springs, Chaffee County.

Other areas that are geologically significant but far from a center of population are:

- 1) Deganahl well, Routt County,
- 2) Brands Ranch well, Jackson County,
- 3) Craig warm water well, Moffatt County,
- 4) Hartsel Hot Springs, Park County.

REFERENCES

Barrett, J. K., and Pearl, R. H., 1976, Hydrogeological data of thermal springs and wells in Colorado: Colorado Geological Survey Information Series 6, 124 p.

- Barrett, J. K., and Pearl, R. H., 1978, An appraisal of Colorado's geothermal resources: Colorado Geological Survey Bulletin 39, 224 p.
- Bass, N. W., and Northrop, S. A., 1963, Geology of Glenwood Springs quadrangle and vicinity, northwestern Colorado: U.S. Geological Survey Bulletin 1142-J, 74 p., map scale 1:31,680.
- Bond, M. A., 1981, An integrated geophysical study of the Shaw Warm Spring area, San Luis Valley, south-central Colorado: unpublished MS thesis, Colorado School of Mines, 162 p.
- Bush, A. L., Bromfield, C. S., and Pierson, C. T., 1959, Areal geology of the Placerville quadrangle, San Miguel County, Colorado: U.S. Geological Survey Bulletin 1072-E, p. 299–384, scale 1:24,000.
- Bush, A. L., and Bromfield, C. S., 1966, Geologic map of the Dolores Peak quadrangle, Dolores and San Miguel Counties, Colorado: U.S. Geological Survey Geological Quadrangle Map GQ-536, scale 1:24,000.
- Cahill, R., 1983, Colorado Hot Springs Guide: Pruett Publishing Co., Boulder, Colorado, 180 p.
- Dick, J. D., 1976, Geothermal reservoir temperatures in Chaffee County, Colorado: unpublished MS thesis, Northeastern Louisiana University, Monroe, Louisiana, 171 p.
- Ettinger, M., 1964, Geology of the Hartsel area, South Park, Park County, Colorado: The Mountain Geologist, v. 1, no. 3, p. 127–132.
- George, R. D., Curtis, H. A., Lester, O. C., Crook, J. K., and Yeo, J. B., 1920, Mineral waters of Colorado: Colorado Geological Survey Bulletin 11, 474 p.
- Hail, W. J., Jr., 1965, Geology of northwestern North Park, Colorado: U S. Geological Survey Bulletin 1188, 133 p., map scale 1:24,000.
- Hail, W. J., Jr., 1971, Geological reconnaissance map of the Chris Mountain and Pagosa Springs quadrangle, Archuleta County, Colorado: U.S. Geological Survey Open File Report 71-142.
- Hail, W. J., Jr., 1972, Reconnaissance geological map of the Hotchkiss area, Delta and Montrose Counties, Colorado: U.S. Geological Survey Miscellaneous Geological Investigation Map I-698, scale 1:48,000.
- Hedlund, D. C., and Olson, J. C., 1975, Geologic map of the Powderhorn quadrangle, Gunnison and Saguache Counties, Colorado: U.S. Geological Survey Quadrangle Map GQ-1178, scale 1:24,000.

Howland, A. M., 1936, An occurrence of barite in redbeds of Colorado: American Mineralogist, v. 21, no. 9, p. 584–588.

- Izett, G. A., 1968, Geology of the Hot Sulphur Springs quadrangle, Grand County, Colorado: U.S. Geological Survey Professional Paper 586, 79 p., scale 1:62,500.
- Kucera, R. E., 1962, Geology of the Yampa district, Northwest Colorado: unpublished PhD. thesis, University of Colorado, Boulder, 675 p., scale 1:24,000.
- Lipman, P. W., 1976, Geologic map of the Del Norte area, Eastern San Juan Mountains, Colorado: U.S. Geological Survey Miscellaneous Investigations Map I-952, scale 1:62,500.
- Luedke, R. G., and Burbank, W. S., 1962, Geologic map of the Ouray quadrangle, Colorado: U.S. Geological Survey Geologic Map GQ-192, scale 1:62,500.
- McCarthy, K. P., Been J., Reimer, G. M., Bowles, C. G., and Murrey, D. K., 1982 (a), Helium and ground temperature surveys at Steamboat Springs, Colorado: Colorado Geological Survey Special Publication 21, 11 p.
- McCarthy, K. P., Zacharakis, T. G., and Pearl, R. H., 1982 (b), Geothermal resource assessment of Hartsel, Colorado: Colorado Geological Survey Resource Series 18, 86 p.
- McKnight, E. T., 1974, Geology and ore deposits of the Rico district, Colorado: U.S. Geological Survey Professional Paper 723, 100 p., scale 1:12,000.
- Osterhoudt, W., 1978, Chromo East, in Fassett, J. E., ed., Oil and Gas Fields of the Four Corners Area, Volume 1: Four Corners Geological Society, p. 113–115.
- Pearl, R. H., Zacharakis, T. G., and Ringrose, C. D., 1983, Geothermal resource assessment of the Steamboat-Routt Hot Springs area, Colorado: Colorado Geological Survey Resource Series 22, 86 p.
- Reed, M.R., 1983, Assessment of low-temperature geothermal resources of the United States— 1985: U.S. Geological Survey Circular 892, 73 p.
- Scott, G. R., 1975, Reconnaissance geologic map of the Buena Vista quadrangle, Chaffee and Park Counties, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-657, scale 1:62,500.

- Scott, G. R., 1977, Reconnaissance geological map of the Canon City quadrangle, Fremont County, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-892, scale 1:24,000.
- Scott, G. R., Van Alstine, Sharp, W. N., 1975, Geologic map of the Poncha Springs quadrangle: U.S. Geological Survey Miscellaneous Field Studies Map MF-658, scale 1:62,500.
- Sharp, R. R. Jr., and Aamodt, P. L., 1976, Uranium concentrations in natural waters, South Park, Colorado: Los Alamos Scientific Laboratory, Informal Report LA-6400-MS, 49 p.
- Snyder, G. L., 1980, Geological map of the northernmost Gore Range and southernmost Park Range, Grand, Jackson, and Routt Counties, Colorado: U.S. Geological Survey Miscellaneous Investigation Series Map I-1114, scale 1:48,000.
- Steven, T. A., and Ratte, J. C., 1973, Geological map of the Creede quadrangle: U.S. Geological Survey Geological Quadrangle Map GQ-1053, scale 1:62,500.
- Taylor, R. B., Scott, G. R., Wobus, R. A., and Epis, R. C., 1975, Reconnaissance geologic map of the Royal Gorge quadrangle, Fremont and Custer Counties, Colorado: U.S. Geological Survey Miscellaneous Geological Investigation Map I-869, 1:62,500.
- Trimble, D. E., 1975, Geologic map of the Niwot quadrangle, Boulder County, Colorado: U.S. Geological Survey Geological Quadrangle Map GQ-1229, scale 1:24,000.
- Tweto, Ogden, 1974, Reconnaissance geological map of the Fairplay West, Mount Sherman, South Peak, and Jones Hill quadrangles, Park, Lake, and Chaffee Counties, Colorado: U.S. Geological Survey Miscellaneous Field Study Map MF-555, scale 1:62,500.
- Van Alstine, R. E., 1975, Geologic map of the Bonanza NE quadrangle, Chaffee and Saguache Counties, Colorado: U.S. Geological Survey Open File Report 75-53, scale 1:62,500.
- Zacharakis, T. G., 1981, Geothermal resource assessment of the Waunita Hot Springs, Colorado: Colorado Geological Survey Special Publication 16, 69 p.

APPENDIX

Table 1. Location of geothermal sources in Colorado.

ABBREVIATIONS: HS=Hot Spring; W=Well; Sec=Section; Qtr=Quarter; Twp=Township, Rge=Range, Merid=Meridian; Lat/LonD=Latitude/Longitude Degrees, M=Minutes, S=Seconds, Dec=Decimal Degrees; Utm=Universal Tranverse Mercator Coordinates; Rel=Reliability, 1=within 100 ft, 2=within 660 ft, 3=within 1,320 ft, 4=within 2,640 ft, 5=within 5,280 ft, 6=greater than 5,280 ft

DISCAIMER: Well and spring locations have been taken from many sources and not all locations have been field checked. There is no guarantee of the accuracy of any location.

	Site No.	Name	Туре	Quadrangle	County	Sec, Qtr/Qtr	Twp, Rge	Merid.	Lat D	Lat M	Lat S	Lat Dec	Lon D	Lon M	Lon S	Lon Dec	X-Utm	Y-Utm	Rel
1	1	Antelope Warm Spring	нs	Workman Creek	Mineral	1, SWSE	40 N, 2 W	NMPM	37	44	36	37.7433	107	2	14	-107.0372	320502	4179086	1
2	1	Axial	w	Axial	Moffat	23, NESE	4 N, 93 W	6TH	40	18	1	40.3003	107	47	3	-107.7842	263367	4464596	2
3	1	Birdsie Warm Spring	HS	Workman Creek	Mineral	14, NWNE	40 N, 2 W	NMPM	37	43	42	37.7283	107	3	13	-107.0536	319021	4177454	3
4	1	Brands Ranch	w	Pitchpine Mountain	Jackson	31, SWSE	9 N, 81 W	6TH	40	42	16	40.7044	106	32	4	-106.5344	370371	4506869	1
5	1	Browns Canyon Warm Spring	HS	Nathrop	Chaffee	23, SESW	51 N, 8 E	NMPM	38	39	13	38.6536	106	3	11	-106.0531	408367	4278657	3
5	2	Browns Canyon (Chimney Hill)	w	Nathrop	Chaffee	28, SENE	51 N, 8 E	NMPM	38	38	40	38.6444	106	4	41	-106.0781	406180	4277665	2
5	3	Browns Grotto Warm Spring	HS	Nathrop	Chaffee	27, SWSW	51 N, 8 E	NMPM	38	38	13	38.6369	106	4	26	-106.0739	406533	4276829	3
6	1	Canon City Hot Springs	W	Royal Gorge	Fremont	31, SESW	18 S, 70 W	6TH	38	25	56	38.4322	105	15	41	-105.2614	477185	4253598	2
7	1	Carson #1 Well	w	Rules Hill	La Plata	36, NWSW	35 N, 8 W	NMPM	37	15	25	37.2569	107	41	57	-107.6992	260619	4126587	2
8	1	Cebolla "A", (Powderhorn)	HS	Powder Horn	Gunnison	4, NWNE	46 N, 2 W	NMPM	38	16	26	38.2739	107	5	54	-107.0983	316445	4238081	1
8	2	Cebolla "B", (Powderhorn)	HS	Powder Horn	Gunnison	4, NWNE	46 N, 2 W	NMPM	38	16	26	38.2739	107	5	54	-107.0983	316445	4238081	1
8	3	Cebolla "C", (Powderhorn)	HS	Powder Horn	Gunnison	4, NWNE	46 N, 2 W	NMPM	38	16	26	38.2739	107	5	54	-107.0983	316445	4238081	1
9	1	Cement Creek Warm Spring	HS	Cement Mountain	Gunnison	0, Unsurveyed	0,0		38	50	6	38.8350	106	49	34	-106.8261	341498	4299843	1
10	1	Chinaman Canyon	HS	Madrid	Las Animas	30, NENW	32 S, 65 W	6TH	37	14	0	37.2333	104	43	0	-104.7167	525133	4120591	2
11	1	Clark Spring	w	Northeast Pueblo	Pueblo	1, NENE	21 S, 65 W	6TH	38	15	29	38.2581	104	36	35	-104.6097	534146	4234314	3
12	1	Cokedale	HS	Trinidad West	Las Animas	25, NESE	33 S, 65 W	6TH	37	8	23	37.1397	104	36	45	-104.6125	534416	4110239	1
13	1	Colonel Chinn	w	Hotchkiss	Delta	14, CNE	14 S, 92 W	6TH	38	50	22	38.8394	107	38	3	-107.6342	271365	4302049	3
14	1	Conundrum Hot Springs	HS	Maroon Bells	Pitkin	0, Unsurveyed	0, 0		39	0	43	39.0119	106	53	27	-106.8908	336287	4319594	1
15	1	Cottonwood Spring	HS	Good Point	Delta	20, NWSE	51 N, 13 W	NMPM	38	40	8	38.6689	108	20	38	-108.3439	209058	4285135	1
16	1	Cottonwood Hot Springs	HS	Buena Vista West	Chaffee	0, Unsurveyed	0, 0		38	48	46	38.8128	106	13	33	-106.2258	393570	4296507	2
16	2	Cottonwood (Jump Steady)	HS	Buena Vista West	Chaffee	0, Unsurveyed	0, 0		38	48	46	38.8128	106	13	21	-106.2225	393859	4296503	2
16	3	Cottonwood (Merrifield Well)	w	Buena Vista West	Chaffee	28, NENE	14 S, 79 W	6TH	38	48	35	38.8097	106	13	21	-106.2225	393854	4296164	2
17	1	Craig Warm Water Well	w	Castor Gulch	Moffat	9, SESE	6 N, 91 W	6TH	40	29	11	40.4864	107	36	3	-107.6008	279559	4484783	1
18	1	Crowley Ranch Reserve	w	Chromo	Archuleta	0, Unsurveyed	0,0	NMPM	37	1	10	37.0194	106	48	10	-106.8028	339625	4098345	1
19	1	Dallas Creek	w	Ridgway	Ouray	7, SWNE	45 N, 8 W	NMPM	38	10	0	38.1667	107	47	0	-107.7833	256156	4227763	2
20	1	Deganahl (Yampa)	w	Yampa	Routt	18, SESE	2 N, 85 W	6TH	40	8	9	40.1358	106	57	43	-106.9619	332852	4444468	1
20	2	Deganahl-Watson Creek(Yampa)) W	Yampa	Routt	17, NWSW	2 N, 85 W	6TH	40	8	45	40.1458	106	57	20	-106.9556	333420	4445566	2
21	1	Desert Reef (Florence)	Św.	Florence SE	Fremont	30, SWNW	19 S, 68 W	6TH	38	22	9	38.3692	105	2	55	-105.0486	495754	4246571	1
22	1	Dexter Spring	w	Pikes Stockade	Conejos	8, NENE	35 N, 11 E	NMPM	37	17	41	37.2947	105	47	6	-105.7850	430422	4127652	1
23	1	Don K Ranch	w	Wetmore	Pueblo	5, NENE	22 S, 68 W	6TH	38	10	13	38.1703	105	0	48	-105.0133	498832	4224502	i
24	1	Dotsero	HS	Dotsero	Eagle	12, SWNW	5 S, 87 W	6TH	39	37	50	39.6306	107	6	5	-107.1014	319651	4388655	2
24	2	Dotsero South	HS	Dotsero	Eagle	12, SWSW	5 S, 87 W	6TH	39	37	31	39.6253	107	5	58	-107.0994	319804	4388065	4
25	1	Dry Creek Well	w	Bayfield	La Plata	28, SESE	34 N, 7 W	NMPM	37	9	24	37.1567	107	36	31	-107.6086	268346	4115235	2
26	t	Dunton	HS	Dolores Peak	Dolores	0, Unsurveyed	0, 0		37	46	17	37.7714	108	5	33	-108.0925	227606	4184751	4
27	1	Dutch Crowley	w	Monero	Archuleta	0, Unsurveyed	0, 0	NMPM	36	59	56	36.9989	106	46	19	-106.7719	342327	4096014	1
28	i	East Willow Creek	w	Bull Fork	Garfield	4, NWNW	5 S, 97 W	6TH	39	38	50	39.6472	108	17	22	-108.2894	217738	4393567	2
29	1	Eldorado Springs "A"	w	Eldorado	Boulder	0, Unsurveyed	0, 0		39	55	56	39.9322	105	16	47	-105.2797	476099	4420062	2
29	2	Eldorado Springs "B"	HS	Eldorado	Boulder	0, Unsurveyed	0, 0		39	55	56	39.9322	105	16	47	-105.2797	476099	4420062	2
30	1	Eoff	W	Serviceberry Mountain	Archuleta	7, SESW	34 N, 1 W	NMPM	37	11	28	37.1911	106	59	43	-106.9953	322899	4117734	1
31	1	Florence	W	Florence	Fremont	7, NENW	19 S, 68 W	6TH	38	24	53	38.4147	105	2	43	-105.0453	496047	4251625	2
																			-

ID	Site No.	Name	Туре	Quadrangle	County	Sec, Qtr/Qtr	Twp, Rge	Merid.	Lat D	Lat M	Lat S	Lat Dec	Lon D	Lon M	Lon S	Lon Dec	X-Utm	Y-Utm	Rel
32	1	Fremont Natatorium	w	Canon	Fremont	26, NWNW	18 S, 70 W	6TH	38	27	37	38.4603	105	11	45	-105.1958	482914	4256698	2
33	1	Geyser	HS	Rico	Dolores	0, Unsurveyed	0, 0		37	44	48	37.7467	108	7	1	-108.1169	225361	4182079	3
34	1	Glenwood Springs																	
		(Big Spring)	HS	Glenwood Springs	Garfield	9, SENE	6 S, 89 W	6TH	39	32	58	39.5494	107	19	18	-107.3217	300511	4380117	2
34	2	Glenwood Springs																	
		(Drinking Spring)	HS	Glenwood Springs	Garfield	9, SENE	6 S, 89 W	6TH	39	32	58	39.5494	107	19	18	-107.3217	300511	4380117	2
34	3	Glenwood Springs					•												
		(Vapor Cave)	HS	Glenwood Springs	Garfield	9, SENE	6 S, 89 W	6TH	39	33	3	39.5508	107	19	11	-107.3197	300683	4380267	2
34	4	Glenwood Springs					•												
		(Graves Springs)	HS	Glenwood Springs	Garfield	9, NWNW	6 S, 89 W	6TH	39	33	18	39.5550	107	20	7	-107.3353	299357	4380764	3
34	5	Glenwood Springs (Spring A)	HS	Glenwood Springs	Garfield	10, SWNW	6 S, 89 W	6TH	39	32	58	39.5494	107	19	10	-107.3194	300703	4380112	2
34	6	Glenwood Springs (Spring B)	HS	Glenwood Springs	Garfield	10, SWNW	6 S, 89 W	6TH	39	33	2	39.5506	107	19	4	-107.3178	300849	4380232	2
34	7	Glenwood Springs (Spring C)	HS	Glenwood Springs	Garfield	10, SWNW	6 S, 89 W	6TH	39	33	4	39.5511	107	19	0	-107.3167	300945	4380291	2
34	8	Glenwood Springs (
		Railroad Spring)	HS	Glenwood Springs	Garfield	10, NENW	6 S, 89 W	6TH	39	33	16	39.5544	107	18	51	-107.3142	301170	4380655	4
35	1	Grassy Creek (Hayden)	W	Mount Harris	Routt	27, SWSE	6 N, 87 W	6TH	40	26	33	40.4425	107	8	1	-107.1336	319045	4478848	2
36	1	Hartsel (Spring A)	HS	Hartsel	Park	8, NESE	12 S, 75 W	6TH	39	1	5	39.0181	105	47	40	-105.7944	431223	4318873	1
36	2	Hartsel (Spring B)	HS	Hartsel	Park	8, NESE	12 S, 75 W	6TH	39	1	5	39.0181	105	47	40	-105.7944	431223	4318873	1
37	1	Haystack Butte	w	Niwot	Boulder	33, NENW	2 N, 70 W	6TH	40	6	1	40.1003	105	14	20	-105.2389	479638	4438705	3
38	1	Hooper Aquaculture Well	Ŵ	Hooper East	Alamosa	22, NWNW	40 N, 10 E	NMPM	37	42	22	37,7061	105	52	20	-105.8722	423114	4173361	1
39	1	Horse Mountain Spring	HS	Battle Rock	Montezuma	24. SWSW	35 N, 18 W	NMPM	37	16	10	37.2694	108	47	22	-108,7894	163950	4131294	2
40	1	Hot Sulphur Springs (Spring A)	HS	Hot Sulphur Springs	Grand	3, SWSE	1 N, 78 W	6TH	40	4	29	40.0747	106	6	41	-106.1114	405232	4436432	2
40	2	Hot Sulphur Springs (Spring B)	HS	Hot Sulphur Springs	Grand	3, SWSE	1 N. 78 W	6TH	40	4	29	40.0747	106	6	41	-106.1114	405232	4436432	2
40	3	Hot Sulphur Springs (Spring C)	HS	Hot Sulphur Springs	Grand	3, SWSE	1 N. 78 W	6TH	40	4	29	40.0747	106	6	40	-106.1111	405256	4436432	2
40	4	Hot Sulphur Springs (Spring D)	HS	Hot Sulphur Springs	Grand	3. SWSE	1 N. 78 W	6TH	40	4	28	40.0744	106	6	40	-106.1111	405256	4436401	3
41	1	Idaho Springs (Spring A)	HS	Idaho Springs	Clear Creek	1. NENW	4 S, 73 W	6TH	39	44	20	39.7389	105	30	43	-105.5119	456134	4398693	2
41	2	Idaho Springs (Spring B)	HS	Idaho Springs	Clear Creek	0, Unsurveyed	0.0	0	39	44	21	39.7392	105	30	43	-105.5119	456134	4398724	2
41	3	Idaho Springs (Spring C)	HS	Idaho Springs	Clear Creek	1, NENW	4 S, 73 W	6TH	39	44	19	39.7386	105	30	43	-105.5122	456134	4398662	2
	4		W		Clear Creek	0, Unsurveyed	0.0	6TH	39	44	22		105	30	44				
41		Idaho Springs (Lodge Well)	HS	Idaho Springs	Las Animas	6, SESW	-1 -	6TH	39	• •		39.7394			• -	-105.5119	456134	4398754	2
42	1	Jacks Mine		Madrid			33 S, 65 W			11	40	37.1944	104	42	52	-104.7144	525344	4116277	2
43	1	Juniper Hot Springs	HS	Juniper Hot Springs	Moffat	16, NESW	6 N, 94 W	oT11	40	28	1	40.4669	107	57	10	-107.9528	249653	4483563	1
44	1	Lake City Airstrip	W	Lake City	Hinsdale	11, SWSW	44 N, 4 W	6TH	38	4	35	38.0764	107	17	50	-107.2972	298502	4216577	2
45	1	Lake San Cristobal	W	Lake San Cristobal	Hinsdale	15, NESW	43 N, 4 W	6TH	37	59	0	37.9833	107	17	40	-107.2944	298491	4206244	2
46	1	Lemon	HS	Placerville	San Miguel	34, SESE	44 N, 11 W	NMPM	38	0	55	38.0153	108	3	11	-108.0531	231968	4211705	2
47	1	Lost Creek (Bennett)	w	Bennett	Adams	25, SESE	2 S, 64 W	6TH	39	50	25	39.8403	104	29	21	-104.4892	543707	4409945	2
48	1	Marigold	w	Cripple Creek South	Teller	10, SWSW	16 S, 70 W	6TH	38	39	47	38.6631	105	13	7	-105.2186	480980	4279203	2
49	1	Maurer Ranch	W	Sugar City	Crowley	14, SWNE	22 S, 56 W	6TH	38	8	8	38.1356	103	38	41	-103.6447	618776	4221517	2
50	1	McIntire Warm Spring	HS	Pikes Stockade	Conejos	18, NWNW	35 N, 11 E	NMPM	37	16	50	37.2806	105	49	6	-105.8183	427454	4126107	1
51	1	MGP Well	w	Weston	Las Animas	32, NWNW	33 S, 66 W	6TH	37	8	1	37.1336	104	48	31	-104.8086	517000	4109508	1
52	1	Mineral Hot Springs (Spring A)	w	Villa Grove	Saguache	7, SWNW	45 N, 10 E	NMPM	38	10	8	38.1689	105	55	5	-105.9181	419579	4224746	3
52	2	Mineral Hot Springs (Spring B)	HS	Villa Grove	Saguache	7, SWNW	45 N, 10 E	NMPM	38	10	8	38.1689	105	55	6	-105.9183	419556	4224746	3
52	3	Mineral Hot Springs (Spring C)	HS	Villa Grove	Saguache	12, SENE	45 N, 9 E	NMPM	38	10	6	38.1683	105	55	11	-105.9197	419433	4224685	3
52	4	Mineral Hot Springs (Spring D)	HS	Villa Grove	Saguache	12, SENE	45 N, 9 E	NMPM	38	10	4	38.1678	105	55	20	-105,9222	419214	4224627	3
53	1	Moffat	w	Moffat South	Saguache	8, NWSW	43 N, 10 E	6TH	37	59	2	37.9839	105	54	5	-105.9014	420840	4204205	ž
54	1	Mosca West	w	Hooper West	Alamosa	6, NWNW	39 N, 10 W	6TH	37	39	41	37.6614	105	55	38	-105.9272	418217	4168446	2
55	1	Mt. Princeton Hot Springs		•															-
55		(Spring A)	HS	Mount Antero	Chaffee	19, SWNW	15 S, 78 W	6TH	38	43	58	38.7328	106	9	41	-106.1614	399052	4287556	2
55	2	Mt. Princeton Hot Springs																	-
00	-	(Spring B)	HS	Mount Antero	Chaffee	19, SWNW	15 S, 78 W	6TH	38	43	58	38.7328	106	9	41	-106.1614	399052	4287556	2
55	3	Mt. Princeton Hot Springs												-					-
55	0	(Spring D)	HS	Mount Antero	Chaffee	19, SWNW	15 S, 78 W	6TH	38	43	58	38.7328	106	9	41	-106.1614	399052	4287556	2
55	A	Mt. Princeton Hot Springs						-						-			COUL	.207000	-
55	4	(Spring E)	нs	Mount Antero	Chaffee	19, SWNW	15 S, 78 W	6TH	38	43	58	38.7328	106	9	41	-106.1614	399052	4287556	2
	~	(Spring E) Mt. Princeton Hot Springs						~				00.70L0		3		100.1014	000002	4207000	6
55	5		HS	Mount Antero	Chaffee	19, SWNW	15 S, 78 W	6TH	38	43	58	38.7328	106	9	41	-106.1614	399052	4287556	2
		(Spring F)			2			0	00		00	00.7020		3	71	100.1014	033032	4207000	2

٠

ID	Site No.	Name	Туре	Quadrangle	County	Sec, Qtr/Qtr	Twp, Rge	Merid.	Lat D	Lat M	Lat S	Lat Dec	Lon D	Lon M	Lon S	Lon Dec	X-Utm	Y-Utm	Rel
55	6	Mt. Princeton Hot Springs																	
55	7	(Hortense) Mt. Princeton Hot Springs	HS	Mount Antero	Chaffee .	24, SENW	15 S, 79 W	6TH	38	43	57	38.7325	106	10	30	-106.1750	397869	4287540	1
	8	(Hortense Well)	W	Mount Antero	Chaffee	24, SENW	15 S, 79 W	6TH	38	43	58	38.7328	106	10	27	-106.1742	397941	4287571	3
55	-	Mt. Princeton Hot Springs (Woolmington Well)	w	Mount Antero	Chaffee	24, SESW	15 S, 79 W	6TH	38	43	24	38.7233	106	10	38	-106.1772	397663	4286525	3
55	9	Mt. Princeton Hot Springs (Wright Well, east)	w	Mount Antero	Chaffee	24, SENE	15 S, 79 W	6TH	38	43	56	38.7322	106	9	58	-106.1661	398641	4287500	3
55	10	Mt. Princeton Hot Springs	w					6TH		43				-			397868	4287509	3
55	11	(Wright Well, west) Mt. Princeton Hot Springs		Mount Antero	Chaffee	24, SENW	15 S, 79 W		38		56	38.7322	106	10	30	-106.1750			
56	1	(Young Life Well) Mullenville (Rhodes)	w	Mount Antero	Chaffee	24, SENW	15 S, 79 W	6TH	38	43	56	38.7322	106	10	32	-106.1756	397820	4287510	3
		Warm Spings	HS	Fairplay West	Park	24. NWSW	10 S. 78 W	6TH	39	9	49	39,1636	106	3	58	-106.0661	407893	4335266	1
57	1	Orchard Mesa (Grand Junction)	w	Grand Junction	Mesa	19, SWSE	1 S. 1 E	UTE	39	2	55	39.0486	108	31	12	-108.5200	195358	4327862	2
58	1	Orvis Hot Spring	HS	Dallas	Ouray	22, CSW	45 N, 8 W	NMPM	38	8	0	38.1333	107	44	2	-107.7339	260379	4223934	1
59	1	Ouray (Wiesbaden &					-				-								
59	2	Motel Spring A) Ouray (Wiesbaden &	HS	Ouray	Ouray	0, Unsurveyed	0, 0		38	1	16	38.0211	107	40	3	-107.6675	265841	4211310	2
59	3	Motel Spring B) Ouray (Wiesbaden &	HS	Ouray	Ouray	0, Unsurveyed	0, 0		38	1	16	38.0211	107	40	3	-107.6675	265841	4211310	2
29	3	Motel Spring C)	HS	Ouray	Ouray	0, Unsurveyed	0, 0		38	1	16	38.0211	107	40	3	-107.6675	265841	4211310	2
59	4	Ouray (Pool or Box																	
		Canyon Spring)	HS	Ouray	Ouray	0, Unsurveyed	0, 0		38	1	6	38.0183	107	40	41	-107.6781	264905	4211028	3
59	5	Ouray (Fellin Spring)	HS	Ouray	Ouray	0, Unsurveyed	0, 0		38	1	22	38.0228	107	39	57	-107.6658	265993	4211491	1
59	6	Ouray (Vinegar Hill Spring)	HS	Ouray	Ouray	0, Unsurveyed	0, 0		38	1	14	38.0206	107	40	4	-107.6678	265815	4211250	1
59	7	Ouray (Manganese Mine)	HS	Ouray	Ouray	0, Unsurveyed	0, 0		38	1	9	38.0192	107	40	31	-107.6753	265152	4211115	1
59	8	Ouray (Uncompangre Spring)	HS	Ouray	Ouray	0, Unsurveyed	0, 0		38	1	25	38.0236	107	40	27	-107.6742	265264	4211605	4
59	9	Ouray City Park OX-2	w	Ouray	Ouray	0, Unsurveyed	0,0		38	1	40	38.0278	107	40	15	-107.6708	265570	4212059	1
59	10	Ouray City Park OX-6	w	Ouray	Ouray	0, Unsurveyed	0,0		38	1	43	38.0286	107	40	15	-107.6708	265573	4212151	1
60	1	Oxford Well	w	Gern Village	La Plata	26, NESE	34 N. 8 W	NMPM	37	9	33	37.1592	107	40	41	-107.6781	262185	4115685	2
61	1	Pagosa Springs (Big Spring)	HS	PagosaSprings	Archuleta	13, SESW	35 N, 2 W	NMPM	37	15	52	37.2644	107	Ö	37	-107.0103	321740	4125898	1
61	2	Pagosa Springs		• • •										_			-		·
		(Courthouse well)	W	Pagosa Springs	Archuleta	13, SWNE	35 N, 2 W	NMPM	37	15	58	37.2661	107	0	38	-107.0106	321719	4126084	3
61	3	Pagosa Springs (Spa Motel well		Pagosa Springs	Archuleta	13, NWSE	35 N, 2 W	NMPM	37	15	55	37.2653	107	0	35	-107.0097	321792	4125991	4
62	1	Papeton well (Colorado Springs)		Pikeview	El Paso	32, NENE	13 S, 66 W	6TH	38	52	44	38.8789	104	47	46	-104.7961	517686	4303149	2
63	1	Paradise Hot Spring	W	Groundhog Mountain	Dolores	0, Unsurveyed	0, 0		37	45	15	37.7542	108	7	54	-108.1317	224091	4182955	1
64	1	Penny Hot Springs	W	Redstone	Pitkin	4, NENW	10 S, 88 W	6TH	39	13	33	39.2258	107	13	29	-107.2247	307957	4343988	1
64	1	Penny Hot Springs (Granges																	
		Spring)	w	Redstone	Pitkin	33, SESW	9 S, 88 W	6TH	39	13	50	39.2306	107	13	34	-107.2261	307850	4344516	2
65	1	Pinkerton (Spring A)	HS	Hermosa	La Plata	25, SWNE	37 N, 9 W	NMPM	37	26	50	37.4472	107	48	17	-107.8047	251884	4147976	3
65	2	Pinkerton (Spring B)	HS	Hermosa	La Plata	25, NWNE	37 N, 9 W	NMPM	37	26	54	37.4483	107	48	18	-107.8050	251863	4148100	4
65	3	Pinkerton (Mound Spring)	HS	Hermosa	La Plata	25. NWNE	37 N. 9 W	NMPM	37	27	7	37,4519	107	48	20	-107.8056	251825	4148502	3
65	4	Pinkerton (Little Mound Spring)	HS	Hermosa	La Plata	25. NWNE	37 N. 9 W	NMPM	37	27	9	37.4525	107	48	21	-107.8058	251803	4148565	3
66	1	Poncha Springs (Spring A)	HŠ	Poncha Pass	Chaffee	15, NWSW	38 N. 8 E	NMPM	38	29	49	38,4969	106	4	37	-106.0769	406086	4261297	1
66	ż	Poncha Springs (Spring B)	HS	Poncha Pass	Chaffee	15. NWSW	38 N. 8 E	NMPM	38	29	49	38,4969	106	4	37	-106.0769	406086	4261297	1
66	3	Poncha Springs (Spring C)	HS	Poncha Pass	Chaffee	15, NWSW	38 N, 8 E	NMPM	38	29	53	38,4981	106	4	34	-106.0761	406159	4261297	2
66	4	Poncha Springs (Spring D)	HS	Poncha Pass	Chaffee	15, NWSW	38 N, 8 E	NMPM	38	29	53	38,4981	106	4	34	-106.0761	406159	4261420	2
	5		HS	Poncha Pass	Chaffee	15, NWSW	38 N, 8 E	NMPM	38	29	53	38,4981	106	4	34	-106.0761	406159		
66	-	Poncha Springs (Spring E)	HS	South River Peak	Mineral	0. Unsurveyed	0,0		37	30	33	37.5092	106	52	28	-106.8744		4261420	2
67	1	Rainbow	HS		Gunnison	22. SWSE	14 S. 85 W	6TH	38	48	47	38.8131	106		28 28		334327	4152805	1
68	1	Ranger		Cement Mountain				ULLA	38 37	48 42	47 5			52		-106.8744	337252	4297493	1
69	1	Rico (Diamond drill hole)	W	Rico	Dolores	0, Unsurveyed	0, 0				-	37.7014	108	1	45	-108.0292	232934	4176799	3
69	2	Rico (Big Geyser Warm Spring)	W	Rico	Dolores	0, Unsurveyed	0, 0		37 37	42 42	0	37.7000	108	1	44	-108.0289	232954	4176644	3
69	3	Rico (Geyser Warm Spring)	W	Rico	Dolores	0, Unsurveyed	0, 0		37	42	2	37,7006	108	1	44	-108.0289	232956	4176706	3

ID	Site No.	Name	Туре	Quadrangle	County	Sec, Qtr/Qtr	Twp, Rge	Merid.	Lat D	Lat M	Lat S	Lat Dec	Lon D	Lon M	Lon S	Lon Dec	X-Utm	Y-Utm	Rel
69	4	Rico (Little Spring)	w	Rico	Dolores	0, Unsurveyed	0, 0		37	42	4	37.7011	108	1	44	-108.0289	232958	4176767	3
70	1	Roatcap Creek	W	Gray Reservoir	Delta	15, NESE	13 S, 92 W	6TH	38	55	7	38.9186	107	38	57	-107.6492	27 03 18	4310874	2
70	2	Roatcap Creek (Stevens Gulch)	w	Gray Reservoir	Delta	14, NENE	13 S, 92 W	6TH	38	55	39	38.9275	107	37	50	-107.6306	271960	4311814	2
71	1	Routt [aka Strawberry]		-															
		(Spring A)	HS	Rocky Peak	Routt	18. SWSE	7 N, 84 W	6TH	40	33	34	40.5594	106	51	0	-106.8500	343372	4491286	1
71	2	Routt [aka Strawberry]				,													
		(Spring B)	HS	Rocky Peak	Routt	18, SWSE	7 N, 84 W	6TH	40	33	34	40.5594	106	51	0	-106.8500	343372	4491286	1
71	3	Routt [aka Strawberry]						0		•••				•	-				
	-	(Spring C)	HS	Rocky Peak	Routt	18, SWSE	7 N, 84 W	6TH	40	33	34	40.5594	106	51	0	-106.8500	343372	4491286	1
71	4	Routt [aka Strawberry]		noony roun		10, 01102	/ 11, 0 1 11	0			•			•	•				
• •	•	(Spring D)	HS	Rocky Peak	Routt	18, SWSE	7 N, 84 W	6TH	40	33	34	40.5594	106	51	0	-106.8500	343372	4491286	1
72	1	Sand Dune Pool	w	Deadman Camp	Saguache	27, NENE	41 N, 10 E	NMPM	37	46	42	37.7783	105	51	20	-105.8556	424656	4181360	1
73	1	Sarcillo Canvon Well	ŵ	Weston	Las Animas	21, NWNE	33 S, 66 W	NMPM	37	9	40	37.1611	104	46	56	-104.7822	519337	4112564	2
74	1	Shaws	HS	TwinMountain SE	Saguache	33, SESE	41 N, 6 E	NMPM	37	45	1	37.7503	106	19	1	-106.3169	383980	4178720	1
75	1	Smith Canyon Spring	HS	Weston	Las Animas	14. SENW	33 S, 66 W	6TH	37	10	20	37.1722	104	45	7	-104.7519	522022	4113803	2
76	i	South Canyon Hot Springs	110	Weaton	Lus Aminas		00 0, 00 11	0111	0,	10	20	07.1722	104	40	•	101010	OLLULL		-
70	•	(Spring A)	HS	Storm King Mountain	Garfield	2. SESW	6 S, 90 W	6TH	39	33	11	39.5531	107	24	40	-107.4111	292836	4380721	3
76	2	South Canyon Hot Springs	пэ	Storm King Mountain	Galileiu	2, 36344	03,90 ₩		39	33	11	39.3331	107	24	40	-107.4111	292000	4300721	5
70	2		HS	Sterm Kine Meuntain	Garfield	2. SESW	6 S, 90 W	6TH	39	33	11	39.5531	107	24	40	-107.4111	292836	4380721	3
		(Spring B)		Storm King Mountain		-,		NMPM	39	29 29	19	39.5531	107	24 51	31	-105.8586	424093	4149219	3
77	1	Splashland	W	Alamosa East	Alamosa	34, SESE	38 N, 10 E	NIVIPIVI	37	29	19	37.4000	105	51	31	-105.0500	424093	4149219	3
78	1	Steamboat Springs		Charles Cardina	D			OTH				40.4000	400	40	07	400 0000	045440	4400705	
		(Heart Spring)	HS	Steamboat Springs	Routt	17, SENE	6 N, 84 W	6TH	40	28	58	40.4828	106	49	37	-106.8269	345149	4482735	1
78	2	Steamboat Springs			-						_								
		(Sulphur Cave Spring)	HS	Steamboat Springs	Routt	17, NWNW	6 N, 84 W	6TH	40	29	3	40.4842	106	50	22	-106.8394	344092	4482912	1
78	3	Steamboat Springs			_														
		(Steamboat Spring)	HS	Steamboat Springs	Routt	8, SWSW	6 N, 84 W	6TH	40	29	20	40.4889	106	50	26	-106.8406	344008	4483438	1
79	1	Stinking Springs	HS	Chromo	Archuleta	0, Unsurveyed	0,0		37	2	6	37.0350	106	48	28	-106.8078	339213	4100080	1
80	1	Swissvale (Spring A)	HS	Wellsville	Fremont	20, SESW	49 N, 10 E	NMPM	38	28	50	38.4806	105	53	26	-105.8906	422322	4259305	2
80	2	Swissvale (Spring F)	HS	Wellsville	Fremont	20, SESW	49 N, 10 E	NMPM	38	28	50	38.4806	105	53	26	-105.8906	422322	4259305	2
81	1	Sylvester Gulch Warm Spring	HS	Somerset	Gunnison	15, SESE	13 S, 90 W	6TH	38	54	48	38.9133	107	26	22	-107.4394	28 8 488	4309780	2
82	1	Texas Camp (Rangely)	W	Rangely	Rio Blanco	32, NWNW	2 N, 102 W	6TH	40	6	14	40.1039	108	52	27	-108.8742	169752	4446276	2
83	1	Trimble Hot Springs	HS	Hermosa	La Plata	15, NWNW	36 N, 9 W	NMPM	37	23	27	37.3908	107	50	52	-107.8478	247885	4141832	3
84	1	Tripp	HS	Hermosa	La Plata	10, SWNW	36 N, 9 W	NMPM	37	24	10	37.4028	107	50	44	-107.8456	248121	4143152	3
85	1	Towaoc Spring	HS	Towaoc	Montezuma	18, SESE	33.5 N, 17 W	NMPM	37	11	7	37.1853	108	43	38	-108.7272	169102	4121733	2
86	1	Two Mile Road	w	Hooper SE	Alamosa	11, SWSE	38 N, 10 E	6TH	37	32	47	37.5464	105	50	53	-105.8481	425084	4155621	2
87	1	Uravan Well	W	Uravan	Montrose	34, NWNW	48 N, 17 W	NMPM	38	22	29	38.3747	108	44	21	-108.7392	173327	4253809	2
88	1	Valley View (Orient) Hot		Valley View															
		Springs (Spring A)	HS	Hot Springs	Saguache	36, NWSE	46 N, 10 E	NMPM	38	11	32	38.1922	105	48	49	-105.8136	428752	4227249	1
88	2	Valley View (Orient) Hot		Valley View															
		Springs (Spring B)	HS	Hot Springs	Saguache	36, NWSE	46 N, 10 E	NMPM	38	11	31	38.1919	105	48	50	-105.8139	428727	4227218	1
88	3	Valley View (Orient) Hot		Valley View															
	-	Springs (Spring D)	HS	Hot Springs	Saguache	36, NWSE	46 N, 10 E	NMPM	38	11	28	38.1911	105	48	33	-105.8092	429140	4227123	3
89	1	Wagon Wheel Gap (4UR Ranch			-														-
00	•	Spring)	HS	Lake Humphreys	Mineral	2, NWNE	40 N, 1 E	NMPM	37	44	55	37.7486	106	49	52	-106.8311	338675	4179297	4
89	2	Wagon Wheel Gap (CFI Spring)	HS	Lake Humphreys	Mineral	2, NWNE	40 N, 1 E	NMPM	37	44	54	37.7483	106	49	50	-106.8306	338723	4179265	4
90	1	Waunita Hot Springs (Spring C)	HS	Pitkin	Gunnison	11, SWSW	49 N, 4 E	NMPM	38	30	50	38.5139	106	30	27	-106.5075	368568	4263705	2
90	2	Waunita Hot Springs (Spring D)	HS	Pitkin	Gunnison	11, SWSW	49 N, 4 E	NMPM	38	30	50	38.5139	106	30	27	-106.5075	368568	4263705	2
90	3	Waunita Hot Springs (Spring A)	HS	Pitkin	Gunnison	11, SWSW	49 N, 4 E	NMPM	38	30	50	38.5139	106	30	27	-106.5075	368568	4263705	2
90	4	Waunita Hot Springs (Spring B)	HS	Pitkin	Gunnison	11, SWSW	49 N, 4 E	NMPM	38	30	50	38.5139	106	30	27	-106.5075	368568	4263705	2
91	1	Lower Waunita Hot Springs																	-
51	'	(Spring A)	HS	Pitkin	Gunnison	10, SWSE	49 N, 4 E	NMPM	38	30	57	38.5158	106	30	56	-106.5156	367869	4263932	3
91	2	Lower Waunita Hot Springs				·							-	-	-				-
91	2	(Spring C)	HS	Pitkin	Gunnison	10, SWSE	49 N, 4 E	NMPM	38	30	57	38.5158	106	30	58	-106.5161	367821	4263932	3
91	3	Lower Waunita Hot Springs	-												-	/			-
91	5	(Spring B)	HS	Pitkin	Gunnison	10, SWSE	49 N, 4 E	NMPM	38	30	57	38.5158	106	30	56	-106.5156	367869	4263932	3
		(00														-			-

ID	Site No.	Name	Туре	Quadrangle	County	Sec, Qtr/Qtr	Twp, Rge	Merid.	Lat D	Lat M	Lat S	Lat Dec	Lon D	Lon M	Lon S	Lon Dec	X-Utm	Y-Utm	Rel
91	4	Lower Waunita Hot Springs (Spring D)	HS	Pitkin	Gunnison	10, SWSE	49 N, 4 E	NMPM	38	30	59	38,5164	106	31	0	-106.5167	367773	4263995	3
92 93	1 1	Wellsville Wet Canyon	HS HS	Wellsville Vigil	Fremont Las Animas	18, SWNW 28, NWNE	49 N, 10 E 32 S, 67 W	NMPM 6TH	38 37	29 14	10 5	38.4861 37.2347	105 104	54 53	45 31	-105.9125 -104.8919	420414 509585	4259940 4120713	1 2

Table 3: Geochemical analysis of geothermal sources in Colorado (short list) (milligrams/liter).

• •

ABBREVIATIONS: HS= Hot Spring; W= Well; ND= Not Detected; Brackets ([]) in the TDS column indicate Conductivity measurements; Conductivity is a good regional indicator of TDS

-

DISCLAIMER: Geochemical analyses come from a variety of sources of variable quality. There is no guarantee of the accuracy of any analysis. Engineering decisions should be based upon complete new analyses.

																		Cation- Anion Baiance,
ID	Site	Name	Туре	pН	TDS	Na	K	Ca	Mg	Fe	SIO ₂	B	LI	HCO3	SO4	CI	F	%
1	1	Antelope Warm Spring	HS		151	44.0	0.1	4.0	0.3	0.02	41		0.01	110	2	3	2.0	5.1
2	1	Axial	W	7.1	1,250	71.0	14.0	140.0	140.0	0.11	18			630	530	17	0.6	0.4
3	1	Birdsie Warm Spring	HS	9.2	[209]													
4	1	Brands Ranch	W	6.4	[465]													
5	1	Browns Canyon Warm Spring	HS	8.0	[775]	170.0	2.4	9.0			28							
5	2	Browns Canyon(Chimney Hill)	W			170.0	2.7	7.0			47							
5	3	Browns GrottoWarm Spring	HS	7.0	494	180.0	3.4	18.0			46							
6	1	Canon City Hot Springs	HS	6.2	1,220	180.2	19.8	179.9	57. 9	0.03	23	0.20	0.23	867	123	186	1.5	0.1
7	1	Carson #1 Well	W	8.2	789	310.0	2.8	2.7	0.3	0.07	23	0.19			1	14	1.5	96.4
8	1	Cebolla "A", (Powderhorn)	HS	6.7	1,453	309.9	65.7	122.7	49.3	0.03	79	1.10	0.49	1,178	125	121	4.3	-0.5
8	2	Cebolla "B", (Powderhorn)	HS		1,460	310.0	64.0	120.0	50.0	0.05	77	1.10	0.72	1,180	130	120	5.8	-1.6
8	3	Cebolla "C", (Powderhorn)	HS		1,460	300.0	63.0	130.0	51.0	0.04	79	1.10	0.71	1,170	130	120	4.6	-0.3
9	1	Cement Creek Warm Spring	HS	7.1	393	38.3	6.1	71.3	19.5	0.01	18	0.07	0.0 9	305	76	11	1.7	0.2
10	1	Chinaman Canyon	HS	8.5	342	41.0	1.6	66.0	16.0	1.60	11	0.02			64	7	0.3	76.1
11	1	Clark Spring	W	6.8	1,210	250.0	18.0	75.0	45.0	2.70	11	0.10	0.22	323	620	28	1.4	-0.9
12	1	Cokedale	HS	8.4	884	190.0	7.1	68.0	29.0	0.62	12	0.06			390	16	0.5	39.6
13	1	Colonel Chinn	W	6.5	2,050	615.0	40.0	120.0	34.5	0.11	25	1.80		1,530	84	375	2.5	-2.6
14	1	Conundrum Hot Springs	HS		1,910	42.2	6.2	563.4	5.0	0.05	41	0.03	0.01	18	1,411	8	2.3	1.7
15	1	Cottonwood Spring	HS	9.0	166	6.4	1.7	35.0	13.0	ND	15			180	4	2	0.1	1.8
16	1	Cottonwood Hot Springs	HS	7.6	358	102.8	8.9	6.1	0.9	0.02	58	0.07	0.13	63	107	28	14.3	6.0
16	2	Cottonwood (Jump Steady)	HS	7.6	348	107.5	2.7	5.9	0.3	0.01	46	0.09	0.16	70	110	30	10.7	4.8
16	3	Cottonwood (Merrifield Well)	W	8.8	301	81.0	2.5	9.5	0.8	0.01	48	0.08	0.11	71	87	23	12.0	-2.7
17	1	Craig Warm Water Well	W	8.2	878	353.5	3.9	5.1	0.7	0.03	50	0.23	0.08	997	3	5	3.1	-5.7
18	1	Crowley Ranch Reserve	W	6.8	[1,789]		00.0	<u></u>	44.0	0.40								
19	1	Dallas Creek	W	7.7	3,210	350.0	20.0	600.0	44.0	2.10	29	0.00			1,900	100		14.1
20	1	Deganahl (Yampa)	W	7.2	263	28.4	2.1	51.5	13.8	0.01	17	0.03		257	27	7	0.1	0.4
20	2	Deganahl-Watson Creek (Yampa)		8.2	241	27.0	2.8	51.0	14.0	0.03		0.47			22	10		85.0
21	1	Desert Reef (Florence)	W	6.5	1,398	281.4	30.4	159.4	70.3	0.06	33	0.17	0.22	1,155	228	128	1.1	-2.1
22	1	Dexter Spring	HS	7.9	4 740	400.0	50.0	160.0	60 0	4 40	40	0.50		4 500	~ .			
23	1	Don K Ranch	W	6.5	1,710		50.0 160.8	160.0 252.3	66.0 68.3	1.10 0.02	40 16	0.56	0.52	1,580	64	150	1.9	2.0
24	1	Dotsero Warm Springs	HS	7.1	10,170	3,451.3	35.5	252.3	68.3 54.7	0.02	10	0.21 0.19	0.10 0.08	452	449	5,544	0.6	-0.4
24	2	Dotsero Warm Springs, South	HS	6.9 8.5	8,950 369	3,064.0 140.0	35.5 0.5	251.5 6.0	54.7 0.9	0.01	12	0.19	0.08	398	480	4,806	0.3	-0.6
25	1	Dry Creek Well	W							1.41	-		0.40	310	41	14	1.1	1.4
26	1	Dunton Hot Spring	HS	6.5 6.9	1,300 1,270	34.3 21.0	20.3 9.3	343.3 310.0	44.3 24.0	0.08	33 33	0.10 0.90	0.10	969 170	333 780	7	0.6	-0.8
27	1	Dutch Crowley	W W		972	21.0 390.0	9.3	5.0	24.0 6.3	0.08	33 11	0.90 3.30	0.33	170 880		8	0.5	-3.6
28	1	East Willow Creek	W	7.9 6.9	972	390.0 6.9	1.1 3.2	5.0 15.0	6.3 4.8	0.05	16	3.30 0.02	0.33	880 63	9 20	100 1	11.0	-1.1
29	1	Eldorado Springs "A"	vv	0.9	101	0.9	3.2	15.0	4.0	0.01	10	0.02	0.01	03	20	1	0.2	2.6

																		Balance,
ID	Site	Name	Туре	pН	TDS	Na	κ	Ca	Mg	Fe	SIO ₂	в	Ы	нсо₃	SO4	CI	F	8 %
29	2	Eldorado Springs "B"	HS	6.6	86	9.3	2.7	11.1	3.4	0.01	15	0.02	0.01	45	24	2	0.3	-0.7
30	1	Eoff	W	7.0	[2,500]													
31	1	Florence	W	6.3	1,480	270.0	32.0	180.0	78.0	0.50	21	0.16	0.24	1,200	210	98	1.1	4.1
32	1	Fremont Natatorium	W	6.8	1,333	203.0	29.4	145.3	67.3	0.95	22	0.09	0.06	615	546	33	0.5	0.1
33	1	Geyser	HS		1,620	400.0	29.0	170.0	40.0	0.02	37	0.12	0.28	1,770	68	2	0.4	-1.9
34	1	Glenwood Springs (BigSpring)	HS	6.3	20,400	7,083.3	263.3	456.7	92.0	0.05	33	0.89	0.40	657	1,131	11,008	2.3	0.1
34	2	Glenwood Springs (Drinking																
		Spring)	HS	6.4	19,950	6,596.0	619.4	505.4	72.6	0.05	31	0,90	0.34	767	1,116	10,658	2.3	-0.8
34	3	Glenwood Springs (Vapor Cave)	HS	6.8	18,200	6,450.0	154.5	426.5	68.0	0.41	28	0.78	0.67	744	1,450	9,300	1.7	2.1
34	4	Glenwood Springs (Graves																
		Springs)	HS	7.0	21,500	7,000.0	180.0	770.0	150.0	0.07	32	1.00	0.69	744	2,000	11,000	2.9	-1.2
34	5	Glenwood Springs (Spring A)	HS	6.3	17,600	6,000.0	160.0	410.0	88.0	0.04	30	0.80	0.73	736	980	9,600	2.2	-3.6
34	6	Glenwood Springs (Spring B)	HS	6.8	18,050	6,375.0	172.5	447.5	81.8	0.03	28	0.82	0.83	749	1,023	9,675	2.2	1.4
34	8	Glenwood Springs (Railroad																
		Spring)	HS	6.8	18,300	6,150.0	190.0	460.0	83.0	0.03	29	0.87		770	990	10,000	2.3	-4.4
35	1	Grassy Creek (Hayden)	W	7.5	1,050	31.0	4.1	200.0	77.0	0.09	14			560	420	21	0.3	-4.3
36	1	Hartsel (Spring A)	HS		2,280	680.0	33.0	120.0	20.0	0.17	41	0.56	1.00	479	320	820	2.1	1.2
36	2	Hartsel (Spring B)	HS	6.7	2,260	662.6	31.2	113.8	21.8	0.49	38	0.50	0.67	458	323	808	2.0	0.2
37	1	Haystack Butte	W	8.0	1,200	510.0	1.3	2.5	0.7	0.05	29	0.74	0.24	1,250	8	30	4.4	3.1
38	1	Hooper Aquaculture well	W	8.8	[463]													
39	1	Horse Mountain Spring	HS	8.2	932	31.0	1.2	160.0	62.0	ND	10				540	6	0.4	20.9
40	1	Hot Sulphur Springs (Spring A)	HS	6.9	1,198	424.0	34.2	15.0	3.3	0.04	32	0.54	0.87	817	130	137	11.6	-0.7
40	2	Hot Sulphur Springs (Spring B)	HS	6.7	1,200	430.0	24.0	15.0	3.1	0.10	35	0.57	1.10	817	140	140	12.0	-2.0
40	3	Hot Sulphur Springs (Spring C)	HS	7.0	1,200	435.0	23.5	15.0	3.4	0.09	33	0.55	1.30	821	135	140	10.8	-0.2
40	4	Hot Sulphur Springs (Spring D)	HS	7.1	1,190	430.0	23.0	16.0	3.0	0.20	30	0.57	1.50	790	150	140	9.1	0.3
41	1	Idaho Springs (Spring A)	HS	6.8	2,005	518.6	62.2	139.0	37.1	0.05	66	0.37	0.51	1,465	397	67	4.2	-0.5
41	2	Idaho Springs (Spring B)	HS		2.070	520.0	82.0	130.0	50.0	0.02	68	0.37	0.66	1,520	400	69	4.8	-0.1
41	3	Idaho Springs (Spring C)	HS		1.070	260.0	44.0	77.0	23.0	0.04	45	0.17	0.34	759	210	36	2.9	1.3
41	4	Idaho Springs (Lodge Well)	W	6.9	2,070	520.0	82.0	150.0	38.0	1.00	58	0.36	0.87	1,490	420	66	3.5	0.8
42	1	Jacks Mine	HS	9.2	1,870	720.0	7.0	7.6	9.8	8.00	3	1.50		.,	390	21	1.4	73.3
43	1	Juniper Hot Springs	HS	8.0	1,120	430.8	10.2	3.6	1.2	0.02	39	0.54	0.10	1.025	16	87	3.3	-2.4
44	1	Lake City Airstrip	W	7.6	1,810	300.0	29.0	290.0	33.0	2.80	34				720	76		44.9
45	1	Lake San Cristobal	W	7.7	1,950	360.0	36.0	180.0	36.0	6.20	32				970	87		21.2
46	1	Lemon	HS	6.6	2,776	745.2	89.7	150.2	11.0	0.59	98	1.86	3.75	1,084	859	267	4.7	0.5
47	1	Lost Creek (Bennett)	W	7.8	329	110.0	1.6	8.3	1.4	0.02	10				84	9	1.4	61.4
48	1	Marigold	W	7.0	2,070	120.0	5.2	500.0	30.0	0.05	61				1,200	55		19.0
49	1	Maurer Ranch	Ŵ	7.2	1,430	430.0	10.0	25.0	18.0	0.05	12			310	750	32	1.5	0.0
50	1	McIntire Warm Springs	HS	8.2	159	11.0	4.1	20.0	2.7		_			••••		02	1.0	0.0
51	1	MGP Well	W	7.6	1,160	480.0	1.5	3.6	0.1	0.55	17	0.10			1	21	4.3	96.0
52	1	Mineral Hot Springs (Spring A)	Ŵ	6.8	651	137.5	14.3	58.3	13.3	0.22	47	0.38	0.31	343	168	39	4.0	-0.3
52	3	Mineral Hot Springs (Spring C)	HS		723	150.0	14.0	60.0	14.0	0.02	50	0.37	0.33	341	190	43	4.2	0.9
52	4	Mineral Hot Springs (Spring D)	HS	6.8	665	142.5	14.0	57.0	13.0	0.07	47	0.37	0.33	352	173	39	3.9	-1.4
53	1	Mosca West	Ŵ	8.8	238	62.0	2.1	2.8	0.2	0.12	70	0.38		110	36	8	2.5	0.2
54	1	Moffat	ŵ	8.2	175	55.0	0.5	5.9	0.1	0.03	27	0.11		120	18	4	3.0	0.2 3.7
~	•		••												.0	-	0.0	3.7

Cation-Anion

ID	Site	Norre	Tumo	-	TDC	Na	V	00	Ma	Fa	510	Р	Li	HCO₃	SO₄	CI	F	Cation- Anion Balance, %
	Sile	Name	Туре	рН	TDS	Na	K	Ca	Mg	Fe	SIO ₂	<u> </u>	LI	псоз	304		r	/0
55	1	Mt. Princeton Hot Springs (Spring A)	HS	7.5	246	57.8	2.1	10.6	0.6	0.01	58	0.02	0.09	72	66	5	9.4	-0.7
55	5	Mt. Princeton Hot Springs		1.0	240	07.0	- .,	10.0	0.0	0.01		0,012						
		(Spring F)	HS		229	50.0	1.9	12.0	0.5	0.01	57	0.01	0.08	73	58	4	8.3	-2.6
55	6	Mt. Princeton Hot Springs							• •						~~	10	17.0	<u> </u>
55	7	(Hortense)	HS	7.8	344	9 6.2	2.6	4.5	0.1	0.02	76	0.04	0.07	89	99	12	17.3	-6.1
		Mt. Princeton Hot Springs (Hortense Well)	w		318	84.0	2.8	6.4	0.1	0.04	72	0.03	0.12	75	92	8	14.0	-1.1
55	8	Mt. Princeton Hot Springs (Woolmington)	w		143	40.0	1.7	11.0	0.6	0.03	1	0.02	0.06	75	47	4	0.1	2.8
55	9	Mt. Princeton Hot Springs	**		140	40.0	1.7	11.0	0.0	0.00		0.02	0.00	/0		-	•	2.0
•••	•	(Wright Well,east)	w		234	61.0	2.1	8.3	0.3	0.05	53	0.02	0.10	68	60	5	10.0	4.2
55	11	Mt. Princeton Hot Springs																
		(Young Life)	W		259	60.0	2.3	8.5	0.3	0.03	71	0.02	0.09	72	67	4	9.2	-1.2
56	1	Mullenville (Rhodes) Warm		7.0	100	0.5		24.4	01 E	0.03	10	0.02	0.01	181	16	24	0.2	-1.2
57	+	Springs Orabard Masa (Grand Junction)	HS W	7.6 9.0	190 480	8.5 190.0	3.1 1.1	34.4 2.0	21.5 0.3	0.03	12 14	0.02	0.01	101	16 43	24 7	0.2	-1.2
57 58	1	Orchard Mesa (Grand Junction) Orvis Hot Springs-Pool (Ridgway)		9.0 6.6	2,370	423.8	45.6	277.0	20.3	0.03	54	0.24	0.77	349	1,277	90	3.5	0.5
59	1	Ouray (Wiesbaden & Motel	no	0.0	2,070	420.0	40.0	211.0	20.0	0.70	04	0.04	0.77	040	1,277		0.0	0.0
00	,	Spring A)	HS		1,580	120.0	11.0	350.0	8.0	0.09	40	0.15	2.40	213	910	31	2.7	2.1
59	2	Ouray (Wiesbaden & Motel			-,													
		Spring B)	HS		695	53.0	5.0	150.0	8.3	0.02	29	0.06	1.20	189	340	14	1.1	1.3
59	3	Ouray (Wiesbaden Well & Motel																
		Spring C)	W	6.9	1,433	112.8	9.3	326.3	10.1	0.01	43	0.24	3.20	191	836	35	3.0	4.5
59	4	Ouray (Pool or Box Canyon	HS	6.8	1,640	100.8	9.4	372.6	8.9	0.03	49	0.21	1.76	129	975	42	3.2	1.8
59	5	Spring) Ouray (Fellin Spring)	HS	7.4	269	24.0	3.4 1.9	43.0	10.0	ND	21	0.24	1.70	185	12		0.1	14.8
59	6	Ouray (Vinegar Hill)	HS	7.0	331	14.0	1.9	70.0	5.0	ND	11	0.24		136	93	11	0.6	1.2
59	7	Ouray (Manganese Mine)	HS	7.2	1.463	138.0	9.2	381.5	11.5	0.16	52	0.33		122	1.069	50	3.0	1.6
59	8	Ouray (Uncompangre Spring)	HS	7.7	2.040	110.0	9.4	350.0	9.2	0.01	44	0.20		138	930	42	3.0	1.2
59	9	Ouray City Park (OX-2)	W	6.7	1,350	89.0	8.9	309.5	13.5	0.02	56	0.22		172	849	38	2.5	-5.0
60	1	Oxford Well	W	7.9	818	320.0	4.3	22.0	1.2	ND		0.05		660	26	2	2.4	24.2
61	1	Pagosa Springs (Big Spring)	HS	6.6	3,206	699.8	131.0	255.9	22.2	0.09	65	2.17	2.64	807	1,462	181	4.6	-0.5
61	2	Pagosa Springs (Courthouse Well)) W	6.5	3,300	780.0	89.0	250.0	25.0	0.02	52	1.80	2.80	858	1,500	170	4.5	1.6
61	3	Pagosa Springs (Spa Motel Well)		6.5	3,320	780.0	91.0	230.0	24.0	0.21	51	1.90	2.90	753	1,600	160	4.4	-0.6
62	1	Papeton	W	6.7	684	55.0	2.0	140.0	21.0	0.30	19	0.05		280	290	18	0.3	0.1
63	1	Paradise Hot Spring	HS	6.8	6,260	1,867.0	370.0	190.0	28.3	0.14	167	4.90	9.60	670	130	3,167	3.8	0.6
64	1	Penny Hot Springs (Granges				750 0	100 5					. =0						
		Spring)	HS	7.2	3,698	759.3 720.0	120.5 116.7	360.0 533.3	46.8 73.3	1.19 4.30	118 28	1.72	9.60	607	1,008	979	3.3	1.1
65	1	Pinkerton (Spring A)	HS	6.3	3,880	720.0		533.3 530.0	73.3 71.0	4.30	28	2.93	2.50	1,590	613	1,000	2.6	0.4
65	2	Pinkerton (Spring B)	HS HS	6.5	[6,000] 3,887	720.0	120.0 120.0	530.0 550.0	71.0	4.40 4.20	28	3.00 2.97	2 <i>.</i> 80 2.80	1,640 1,620	610 623	990 1,000	2.3	-0.4
65	3	Pinkerton (Mound Spring)	HS	6.5 7.0	3,887 [5,500]	/ 10./	120.0	550.0	71.0	4.2V	20	2.31	2.00	1,020	023	1,000	2.3	0.4
65	4	Pinkerton (Little Mound Spring) Poncha Springs (Spring A)	HS	7.0	[3,500] 674	195.0	8.3	17.8	0.4	0.01	82	0.07	0.19	214	203	50	12.0	-1.3
66 66	1	Poncha Springs (Spring A) Poncha Springs (Spring B)	HS	7.5	655	190.0	7.8	18.0	0.5	0.05	83	0.07	0.18	214	190	48	12.0	-0.2
66	2	Functia optings (opting b)							0.0	0.00	~~	v . v .		w , -		70	12.0	.U.L

ID	Site	Name	Туре	pН	TDS	Na	к	Ca	Mg	Fe	SIO2	в	Li	HCO₃	SO₄	CI	F	Anion Balance, %
66	3	Poncha Springs (Spring C)	HS	7.7	668	192.5	8.3	18.8	0.5	0.02	80	0.09	0.19	216	193	50	11.2	0.4
67	1	Rainbow	HS		161	45.0	0.2	2.1	0.3	0.02	39	0.05	0.13	85	30	1	2.2	-3.1
68	1	Ranger	HS	7.0	467	61.3	7.8	71.5	21.3	0.00	19	0.03	0.15	351	92	18	1.4	-0.7
69	1	Rico (Diamond drill hole)	w	7.0	2,250	66.0	28.0	590.0	82.0	0.03	120	0.08	ND	1,120	92 810	2	1.4	11.1
69	2	Rico (Big Geyser Warm Spring)	ŵ	6.8	2,745	72.5	30.5	685.0	95.5	8.40	125	0.07	0.25	1,675	910	4	1.4	-0.7
69	3	Rico (Geyser Warm Spring)	ŵ	6.3	2,790	80.0	32.0	680.0	100.0	8.50	110	0.08	0.25	1,075	920	4	2.1	-2.0
69	4	Rico (Little Spring)	нs	7.0	2,745	76.5	18.8	655.0	101.0	6.10	120	0.08	0.23	1,580	980	3	3.2	-3.3
70	1	Roatcap Creek	w	7.5	3,190	1.300.0	13.0	9.0	3.2	5.40	16	2.00	0.21	1,000	11	180	1.9	90.6
70	2	Roatcap Creek (StevensGulch)	Ŵ	8.3	1,690	650.0	23.0	12.0	3.1	24.00	9	1.00			43	130	1.4	84.8
71	1	Routt [aka Strawberry] (Spring A)	HS	7.8	513	158.0	8.9	8.3	0.1	0.03	151	0.22	0.25	135	47	129	16.3	-1.4
71	2	Routt [aka Strawberry] (Spring B)	HS	7.1	539	160.0	9.1	7.8	0.5	0.08	98	0.28	0.31	135	49	130	17.0	-1.6
72	1	Sand Dunes Pool Well	W	8.3	334	81.0	8.6	3.2	0.4	0.01	120	0.51	0.01	176	23	5	5.9	3.3
73	1	Sarcillo Canyon Well	Ŵ	8.0	393	1.7	2.1	55.0	18.0	ND	11	0.01			100	9	0.5	45.6
74	1	Shaws	HS	9.0	424	130.0	1.5	2.7	0.7	0.01	100	0.12		211	46	7	3.0	18.8
75	1	Smith Canyon Spring	HS	7.5	320	33.0	1.9	54.0	20.0	0.06	10	0.02			37	13	0.3	80.2
76	1	South Canyon Hot Springs						••				0.01			•.		0.0	00.L
		(Spring A)	HS	7.3	787	275.0	8.2	7.6	1.4	0.02	42	0.26	0.15	304	101	198	3.7	-1.3
76	2	South Canyon Hot Springs				270.0	0.2		1.4	U.UL		0.20	0.10	004	101	100	0.7	1.0
	-	(Spring B)	HS	7.1	757	260.0	7.8	7.1	0.9	0.04	43	0.23	0.15	291	100	190	4.0	-3.9
77	1	Splashland	w	8.3	311	72.0	9.9	4.1	0.4	0.02	110	0.34	0.01	151	29	6	4.0	-3. 3 4.0
78	i	Steamboat Springs (Heart Spring)		8.1	888	292.7	11.3	18.3	0.4	0.02	74	0.74	0.01	103	144	319	4.2 5.3	4.0 0.3
78	2	Steamboat Springs (Sulphur		0.1	000	232.1	11.0	10.0	0.5	0.04	/4	0.74	0.22	105	144	515	5.5	0.3
70	2	CaveSpring)	HS	6.5	4,530	1,600.0	110.0	90.0	24.0	0.06	18	2.90	3.00	2,420	490	1,000	3.0	1.3
78	3	Steamboat Springs (Steamboat	115	0.5	4,000	1,000.0	110.0	90.0	24.0	0.00	10	2.90	3.00	2,420	490	1,000	3.0	1.3
/0	3	Spring)	HS	6.7	6.170	2.200.0	140.0	110.0	31.0	0.01	21	3.20	3.70	3,390	590	1.400	2.9	0.3
7 9	1	Spring) Stinking Springs	HS	7.0	899	2,200.0	140.0	210.0	27.0	0.01	24	0.06	0.09	258	470	1,400		
80	1		HS	7.0	[820]	20.0	12.0	210.0	27.0	0.14	24	0.06	0.09	200	470	/	0.6	-2.6
80	2	Swissvale (Spring A) Swissvale (Spring F)	HS	7.0	[726]													
	2		HS	7.1	374	66.0	1.9	48.0	20.0	0.04	•	0.05		250	50	•	~ ~ ~	
81 82	-	Sylvester Gulch Warm Spring	W	7.1	31,200	11,000.0	330.0	48.0 900.0	120.0	0.04	9 33	0.05 9.10		350 440	50	3	0.2	1.3
82 83	1	Texas Camp (Rangely) Trimble Hot Springs	Ŵ	7.4 6.4	3,290	349.0	35.3	900.0 437.3	37.0	0.52	33 56	9.10	1.07	440 859	590	18,000	1.1	2.7
84	1	Tripp	HS	6.2	[1,498]	349.0 396.0	165.0	437.3 558.0	42.0	0.03	97	1.40	1.60	1,121	1,137 1,312	147 254	2.7	-2.3
85	1	Towaoc Spring	HS	0.2	737	110.0	100.0	78.0	42.0		19		1.00	340	300	254 20	0.2	0.2 -2.2
86	i	Two Mile Road	Ŵ	7.5	[540]	130.0	3.7	6.2	0.6					040	500	20	0.2	-2.2
87	t	Uravan Well	ŵ	7.6	254	46.0	22.0	22.0	13.0	0.06	4	0.21		230	13	10		0.7
88	1	Valley View Hot Springs	••	7.0	204	40.0	22.0	22.0	10.0	0.00	-	0.21		230	13	18	1.1	2.7
00	1	(Spring A)	HS	7.2	245	3.6	2.7	50.3	14.3	0.01	20	0.08	0.01	123	90	1	0.5	
88	2	Valley View Hot Springs	110	1.4	240	0.0	6	00.0	14.0	0.01	20	0.00	0.01	125	90	1	0.5	-1.1
00	٤	(Spring B)	HS	7.1	232	3.5	2.3	47.5	13.0	0.02	18	0.01	0.01	125	82	2	0.4	50
88	3	Valley View Hot Springs	110	1.1	LOL	0.0	2.0	47.0	10.0	0.02	10	0.01	0.01	125	02	2	0.4	-5.2
00	3	(Spring D)	HS	7.3	235	3.5	2.7	50.5	13.0	0.04	18	0.12		125	83	2	~ ~ ~	
89	1	Wagon Wheel Gap (4UR Ranch		7.0	200	0.0	£.,	00.0	.0.0	0.04	.5	0.16		120	03	2	0.3	-0.5
03	I.	Spring)	HS	6.9	1,583	476.7	49.0	62.3	14.7	0.01	85	2.13	2.20	1,023	180	200	7.0	• •
00	2	Wagon Wheel Gap (CFI Spring)	HS	6.5	1,565	447.5	46.8	67.3	15.3	0.19	74	2.13	1.90	1,023	145	200 198	7.0	0.3
89 90	2	Waunita Hot Springs (Spring C)	HS	8.3	581	155.0	10.0	8.4	2.0	0.02	120	0.06	0.21	1,023	145	198	7.2	-0.7
90	1	maunita not opinigs (opinig 0)	110	0.0	501	,00.0		0.4	2.0	0.02		0.00	0.61	120	100	10	18.5	4.0

Cation-

ID	Site	Name	Туре	pН	TDS	Na	к	Ca	Mg	Fe	SIO2	В	Li	НСО₃	SO4	CI		Cation- Anion Balance, %
90	2	Waunita Hot Springs (Spring D)	HS	8.3	594	160.0	10.0	6.0	ND	0.01	130	0.07	0.21	132	190	15	18.0	0.7
90	3	Waunita Hot Springs (Spring A)	HS	8.3	604	155.5	9.3	6.3	ND	ND	130	ND	0.17	131	180	31	17.0	-4.5
91	1	Lower Waunita Hot Springs										-						
		(Spring A)	HS	7.8	[1,029]													
91	2	Lower Waunita Hot Springs																
		(Spring C)	HS	7.8	[880]													
91	3	Lower Waunita Hot Springs																
		(Spring B)	HS	7.9	540	153.3	10.0	8.3	0.7	0.07	84	0.06	0.20	161	173	15	16.0	-1.2
91	4	Lower Waunita Hot Springs																
		(Spring D)	HS	7.8	535	150.0	10.0	6.9	0.5	0.17	86	0.07	0.20	153	170	15	20.0	-4.5
92	1	Wellsville	HS	7.2	480	70.4	5.7	64.8	20. 9	0.04	27	0.10	0.07	289	89	54	0.7	0.4
93	1	Wet Canyon	HS	8.2	543	52.0	2.2	99.0	23.0	2.80	11	0.03			200	12	0.5	51.0

Table 4: General information of geothermal sources in Colorado.

ABBREVIATIONS: Type: HS=Hot Spring; W=well; Use: Bnd= bathing, not developed; Bd=bathing, developed; N=no use; MW=mineral water; AC=Aquaculture; ACs=Aquaculture, stock tank; A=Agricultural rrigation; SH=Space Heating; GH=Greenhouse; ?=Not Known; E=Estimated

DISCLAIMER: Information on the hot springs and wells comes from a variety of sources. There is no guarantee of the accuracy of any of the data in this table.

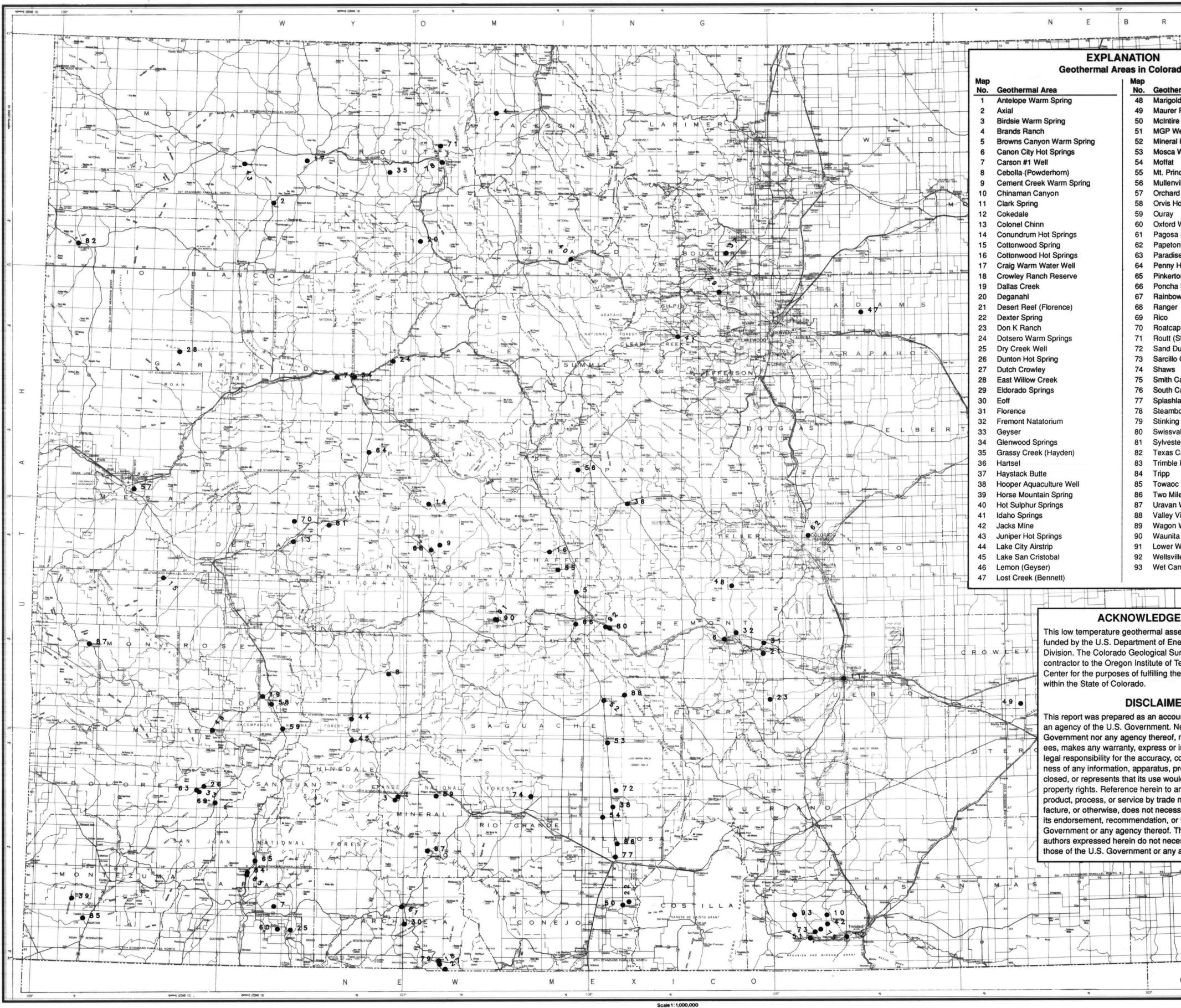
ID	Site	Name	Туре	Use	Temp °C	Flow I/m	Well depth, m
1	1	Antelope Warm Spring	HS	N	32	11 to 46	
2	1	Axial	W	?	22		3.6
3	1	Birdsie Warm Spring	HS	N	30	53	
4	1	Brands Ranch	W	Bnd	34	304E	
5	1	Browns Canyon Warm Spring	HS	N	25	4	
5	2	Browns Canyon (Chimney Hill)	W	N	27		
5	3	Browns Grotto Warm Spring	HS	N	23	19	
6	1	Canon City Hot Springs	HS	N	39	4 to 19	
7	1	Carson #1 Well	W	?	38		744.8
8	1	Cebolla "A", (Powderhorn)	HS	Bd	38	11	
8	2	Cebolla "B", (Powderhorn)	HS	Bd	38		
8	3	Cebolla "C", (Powderhorn)	HS	Bd	40		
9	1	Cement Creek Warm Spring	HS	Bd	26	253	
10	1	Chinaman Canyon	HS	?	26	68	
11	1	Clark Spring	W	MW	25	46	432.0
12	1	Cokedale	HS	?	29	85	
13	1	Colonel Chinn	W	ACs	42	45	20.0
14	1	Conundrum Hot Springs	HS	Bnd	38	145	
15	1	Cottonwood Spring	HS	N	25	5,100	
16	1	Cottonwood Hot Springs	HS	Bd	54	475	
16	2	Cottonwood (Jump Steady)	HS	Bd	53	240	
16	3	Cottonwood (Merrifield Well)	W	SH,GH	54	990	34.8
17	1	Craig Warm Water Well	W	N	38	84	424.0
18	1	Crowley Ranch Reserve	W	N	44	380	
19	1	Dallas Creek	W	S	35		14.8
20	1	Deganahl (Yampa)	W	N	41	10,260	757.6
20	2	Deganahl-Watson Creek (Yampa)	W	N	37		666.6
21	1	Desert Reef (Florence)	W	Bd	55	330	332.1
22	1	Dexter Spring	HS	N	20	190E	-635 . 194
23	1	Don K Ranch	W	?	28	95	
24	1	Dotsero Warm Springs	HS	N	31	2,160	
24	2	Dotsero Warm Springs, South	HS	N	32	3,200	
25	1	Dry Creek Well	W	?	23		46.6
26	1	Dunton Hot Spring	HS	Bnd	42	96	

ID	Site	Name	Туре	Use	Temp °C	Flow I/m	Well depth, m
27	1	Dutch Crowley	w	А	60	350	521.2
28	1	East Willow Creek	Ŵ	?	22	23	6.6
29	1	Eldorado Springs "A"	Ŵ	Bd	24		
29	2	Eldorado Springs "B" (Pool spring)	HS	Bd	25	45	
30	1	Eoff	W	N	39	190E	908.0
31	1	Florence	Ŵ	N	28	494	?
32	1	Fremont Natatorium	Ŵ	Bnd,A	36	183	545.0
33	1	Geyser	HS	N	28	428E	
34	1	Glenwood Springs (Big Spring)	HS	Bd	51	5,060	
34	2	Glenwood Springs (Drinking Springs)	HS	Bd	51	445	
34	3	Glenwood Springs (Vapor Cave)	HS	Bd	50	19E	
34	4	Glenwood Springs (Graves Springs)	HS	Ν	46	19	
34	5	Glenwood Springs (Spring A)	HS	N	44	10E	
34	6	Glenwood Springs (Spring B)	HS	N	51	342	
34	7	Glenwood Springs (Spring C)	HS	N	46	10	
34	8	Glenwood Springs (Railroad Spring)	HS	Bnd	51	285	
35	1	Grassy Creek (Hayden)	W	?	20		3.3
36	1	Hartsel (Spring A)	HS	Bnd	52		
36	2	Hartsel (Spring B)	HS	Bnd	48	181	
37	1	Haystack Butte	W	Ν	24	15E	888.5
38	1	Hooper Aquaculture Well	W	AC	31		625.2
39	1	Horse Mountain Spring	HS	Ν	23		
40	1	Hot Sulphur Springs (Spring A)	HS	Bd	44	42	
40	2	Hot Sulphur Springs (Spring B)	HS	Bd	42	6	
40	3	Hot Sulphur Springs (Spring C)	HS	Bd	40	36	
40	4	Hot Sulphur Springs (Spring D)	HS	Bd	38	57	
41	1	Idaho Springs (Spring A)	HS	Bd	45	80	
41	2	Idaho Springs (Spring B)	HS	Bd	24		
41	3	Idaho Springs (Spring C)	HS	Bd	20	4	
41	4	Idaho Springs (Lodge Well)	W	Bd	46	114	
42	1	Jacks Mine	HS	Ν	27		
43	1	Juniper Hot Springs	HS	Bd	36	63	
44	1	Lake City Airstrip	W	?	24		5.1
45	1	Lake San Cristobal	W	?	24		8.2
46	1	Lemon (Geyser)	HS	Ν	33	36	
47	1	Lost Creek (Bennett)	W	?	27		60.6
48	1	Marigold	W	?	24		17.9
49	1	Maurer Ranch	W	?	23		424.2
50	1	McIntire Warm Springs	HS	N	21		
51	1	MGP Well	W	Ň	26	3,060	439.1

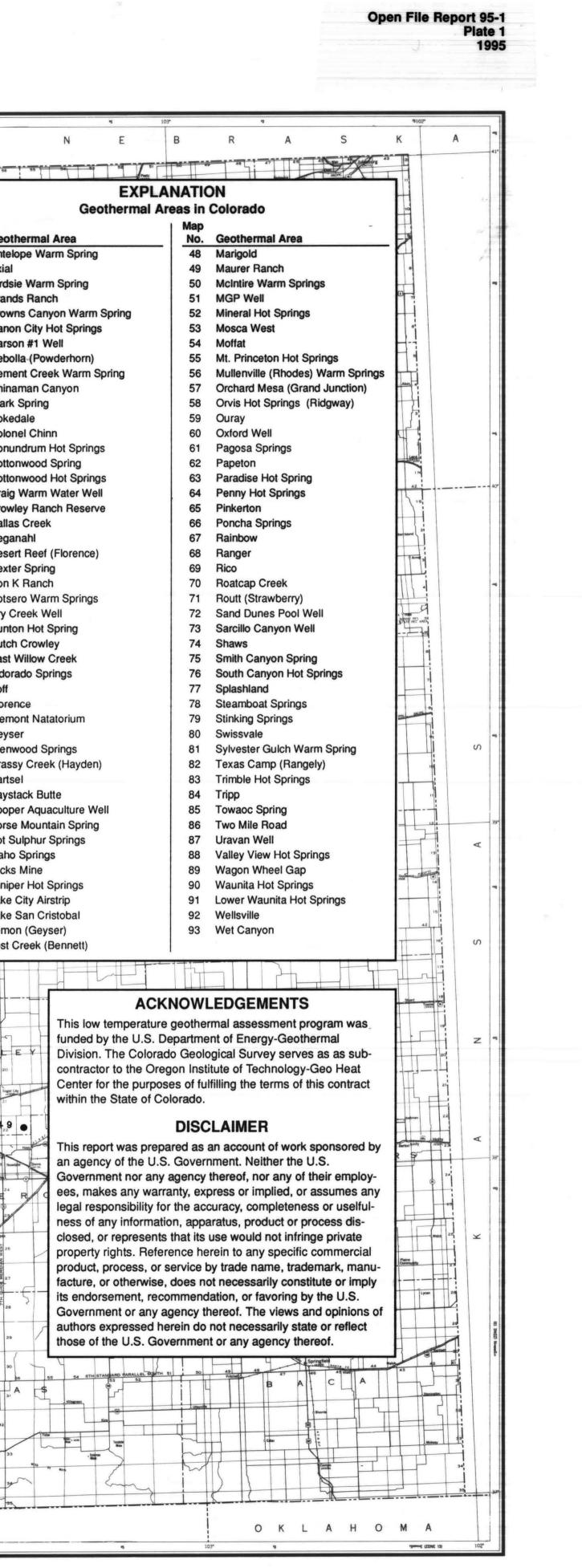
.

.

ID	Site	Name	Түре	Use	Temp °C	Flow I/m	Well depth, m
52	1	Mineral Hot Springs (Spring A)	W	Ν	60	410	?
52	2	Mineral Hot Springs (Spring B)	HS	Ν	51	Small	
52	3	Mineral Hot Springs (Spring C)	HS	Ν	60		
52	4	Mineral Hot Springs (Spring D)	HS	Ν	60	19	
53	1	Mosca West	W	?	30		603.3
54	1	Moffat	W	?	20		75.8
55	1	Mt. Princeton Hot Springs (Spring A)	HS	Bd,SH	54	77	
55	2	Mt. Princeton Hot Springs (Spring B)	HS	Bd,SH	54	Large	
55	3	Mt. Princeton Hot Springs (Spring D)	HS	Bd,SH	44		
55	4	Mt. Princeton Hot Springs (Spring E)	HS	Bd,SH	50		
55	5	Mt. Princeton Hot Springs (Spring F)	HS	Bd,SH	49	46	
55	6	Mt. Princeton Hot Springs (Hortense)	HS	Bd,SH	83	74	
55	7	Mt. Princeton Hot Springs (Hortense Well)	W	Bd,SH	82		54.5
55	8	Mt. Princeton Hot Springs (Woolmington)	W	N	39		
55	9	Mt. Princeton Hot Springs (Wright Well, east)		Bd,SH,GH	67		
55	11	Mt. Princeton Hot Springs (Young Life)	W	Bd,SH	66		
56	1	Mullenville (Rhodes) Warm Springs	HS	N	26	880	
57	1	Orchard Mesa (Grand Junction)	W	?	26		418.2
58	1	Orvis Hot Springs, (Ridgway)	HS	Bd	50	60 to 2,100	
59	1	Ouray (Wiesbaden & Motel Spring A)	HS	Bd,SH	53		
59	2	Ouray (Wiesbaden & Motel Spring B)	HS	Bd,SH	30	7E	
59	3	Ouray (Wiesbaden & Motel Spring C)	HS	Bd,SH	47	4 to 114	
59	4	Ouray (Pool or Box Canyon Spring)	HS	Bd	66	375	
59	5	Ouray (Fellin Spring)	HS	N	29	25	
\ 59	6	Ouray (Vinegar Hill)	HS	N	25	2,272	
59	7	Ouray (Manganese Mine)	HS	Bd	67	205	
59	8	Ouray (Uncompahgre Spring)	HS	Bd	49	19	
59	9	Ouray City Park (OX-2)	W	Bd	49	1500	27.3
60	1	Oxford Well	W	?	27		35.2
61	1	Pagosa Springs (Big Spring)	HS	Bd,SH	57	1,286	
61	2	Pagosa Springs (Courthouse Well)	W	SH	56	114	
61	3	Pagosa Springs (Spa Motel Well)	W	Bd,SH	53		151.5
62	1	Papeton	W	?	22		13.9
63	1	Paradise Hot Spring	HS	Bnd	43	114	
64	1	Penny Hot Springs	HS	Bnd	47	40	
65	1	Pinkerton (Spring A)	HS	N	32	205	
65	2	Pinkerton (Spring B)	HS	N	33	76	
65	3	Pinkerton (Mound Spring)	HS	N	29	23	
65	4	Pinkerton (Little Mound Spring)	HS	N	26	8E	
66	1	Poncha Springs (Spring A)	HS	Bd	70	760	


٠

ID	Site	Name	Туре	Use	Temp °C	Flow I/m	Well depth, m
66	2	Poncha Springs (Spring B)	HS	Bd	65	87	
66	3	Poncha Springs (Spring C)	HS	Bd	62	8	
66	4	Poncha Springs (Spring D)	HS	Bd	56	7E	
66	5	Poncha Springs (Spring E)	HS	Bd	60	2E	
67	1	Rainbow	HS	N	40	171	
68	1	Ranger	HS	?	27	743	
69	1	Rico (Diamond drill hole)	W	N	44	57	
69	2	Rico (Big Geyser Warm Spring)	W	N	35	38	
69	3	Rico (Geyser Warm Spring)	W	N	40	46	
69	4	Ri∞ (Little Spring)	HS	Ν	38	53	
70	1	Roatcap Creek	W	N	22		279.4
70	2	Roatcap Creek (Stevens Gulch)	W	Ν	27		407.6
71	1	Routt [aka Strawberry] (Spring A)	HS	Bd	64	154	
71	2	Routt [aka Strawberry] (Spring B)	HS	Bd	62	114	
71	3	Routt [aka Strawberry] (Spring C)	HS	Bd	54	8E	
71	4	Routt [aka Strawberry] (Spring D)	HS	Bd	51	8E	
72	1	Sand Dunes Pool Well	W	Bnd	44		1333.3
73	1	Sarcillo Canyon Well	W	?	20		8.5
74	1	Shaws	HS	Bnd	29	198	
75	1	Smith Canyon Spring	HS	?	20	0	
76	1	South Canyon Hot Springs (Spring A)	HS	Bnd	48	49	
76	2	South Canyon Hot Springs (Spring B)	HS	Bnd	46	40	
77	1	Splashland	W	Bd,SH	40	2,500	606.0
78	1	Steamboat Springs (Heart Spring)	HS	Bd	39	657	
78	2	Steamboat Springs (Sulphur Cave Spring)	HS	N	20	38	
78	3	Steamboat Springs (Steamboat Spring)	HS	N	26	76	
79	1	Stinking Springs	HS	Ν	26	100	
80	1	Swissvale (Spring A)	HS	N	27	295	
80	2	Swissvale (Spring F)	HS	N	23	76E	
81	1	Sylvester Gulch Warm Spring	HS	?	25		
82	1	Texas Camp (Rangely)	W	?	48		2272.7
83	1	Trimble Hot Springs	HS, W	Bd	43	775	45.4
84	1	Tripp	HS	N	31	195	
85	1	Towaoc Spring	HS	?	22		
86	1	Two Mile Road	W	?	21		454.5
87	1	Uravan Well	W	?	25	500	35.4
88	1	Valley View Hot Springs (Spring A)	HS	Bd	36	210	
88	2	Valley View Hot Springs (Spring B)	HS	Bd	34	350	
88	3	Valley View Hot Springs (Spring D)	HS	Bd	34	315	
89	1	Wagon Wheel Gap (4UR Ranch Spring)	HS	Bd	55	120	


ID	Site	Name	Туре	Use	Temp °C	Flow I/m	Well depth, m
		······································					• • • • • • • • • • • • • • • • • • •
89	2	Wagon Wheel Gap (CFI Spring)	HS	Bd	49	135	
90	1	Waunita Hot Springs (Spring C)	HS	Bd,SH	78	171	
90	2	Waunita Hot Springs (Spring D)	HS	Bd,SH	57		
90	3	Waunita Hot Springs (Spring A)	HS	Bd,SH	77	1,000	
90	4	Waunita Hot Springs (Spring B)	HS	Bd,SH	78		
91	1	Lower Waunita Hot Springs (Spring A)	HS	N	70	285E	
91	2	Lower Waunita Hot Springs (Spring C)	HS	N	70	300	
91	3	Lower Waunita Hot Springs (Spring B)	HS	Ν	68	156	
91	4	Lower Waunita Hot Springs (Spring D)	HS	Ν	63		
92	1	Wellsville	HS	N	35	460	
93	1	Wet Canyon	HS	?	26	270	

Colorado Geological Survey Division of Minerals and Geology Department of Natural Resources Denver, Colorado

Low Temperature Geothermal Areas in Colorado

By James A. Cappa Colorado Geological Survey December 1993

