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CONDENSED DESCRIPTION OF MAP UNITS
The complete description of map units and references is in the accom--
panying booklet.

SURFICIAL DEPOSITS

HUMAN-MADE DEPOSITS
Landfill (latest Holocene)—Municipal trash deposited in a 

landfill along the northwestern border of the quad--
rangle

Artificial fill (latest Holocene) 

Tunnel waste (latest Holocene)—Waste rock excavated 
from the Harold D. Roberts water diversion tunnel in 
the late 1950s and early 1960s

Dredge tailings (latest Holocene)—Displaced during 
dredging operations in the late 1800s

Mine and mill waste (latest Holocene)—Waste rock from 
mines, prospecting pits, and milling operations

ALLUVIAL DEPOSITS—Silt, sand, and gravel in stream 
channels, flood plains, terraces, small debris fans, and sheetwash 
areas

Stream-channel, flood-plain, and low-terrace alluvium 
(Holo---cene)—Clast-supported, pebble, cobble, and 
locally bouldery gravel in a sandy silt matrix. Deposits 
are locally interbedded with and commonly overlain by 
sandy silt and silty sand. Includes modern stream chan--
nel deposits, neighboring flood-plain deposits, and low-
terrace alluvium that rest a maximum of 10 ft above 
modern stream level

Younger terrace alluvium (late Pleistocene)—Poorly sorted, 
clast-supported, silty, sandy, cobble, pebble, and locally 
boulder gravel underlying terraces 10 to 20 ft above 
modern stream channels. Fine-grained overbank de--
posits may be present locally

Older terrace alluvium (early to middle Pleisto-cene)— 
Poorly sorted, clast-supported, silty, sandy, cobble, 
pebble, and locally boulder gravel underlying small 
terraces up to 160 ft above the Swan River in the south--
west corner of the quadrangle. Clasts show greater 
weathering and soil horizons are better developed than 
for younger terrace alluvium

SINTER DEPOSITS—Gravel cemented by metal-rich precip-itates
Ferricrete deposits (Holocene)—Poorly sorted, coarse-

grained, matrix-supported, sand and pebble gravel in a 
sandy silt matrix cemented by the chemical pre-cip--
itation of iron oxides. Only one deposit mapped north 
of Swandyke

COLLUVIAL DEPOSITS—Silt, sand, and gravel on valley sides 
and floors. Material mobilized, transported, and deposited pri--
marily by gravity, but commonly assisted by sheetwash, freeze-
thaw action, and water-saturated conditions that affect pore 
pressure

Colluvium (Holocene and late Pleistocene)—Ranges from 
clast-supported, pebble to boulder gravel in a sandy 
matrix to matrix-supported cobble and pebble gravel in 
a clayey, silty sand matrix

Talus deposits (Holocene and late Pleistocene)—Angular, 
cobbly and bouldery rubble resulting from rockfalls, 
rock avalanches, rock topples, and rockslides

Younger landslide deposits (Holocene and late Pleisto--
cene)—Heterogeneous deposits consisting of unsorted, 
and unstratified deposits of clay, silt, sand, and angular, 
boulder-size rock fragments. Commonly exhibit head 
scars, hummocky topography, closed depressions, and 
pressure ridges

Pre-glacial landslide deposits (early to middle Pleisto-
cene)—Includes large toreva blocks and unsorted, 
unstratified rock fragments ranging in size from 
boulders to sandy silt. Geomorphic features typ-ical of 
younger landslides, such as undulating surfaces and 
closed depressions, are poorly preserved

Landslide deposits, undifferentiated (early to late Pleisto--
cene)—Mapped in areas where the relative age of a 
landslide is difficult to ascertain since many common 
diagnostic features used to establish relative age have 
been altered either by human activities or glacial 
scouring

ALLUVIAL AND COLLUVIAL DEPOSITS—Gravel, sand, and 
silt in debris fans, stream channels, flood plains, and lower 
reaches of adjacent hillslopes

Alluvium and colluvium, undivided (Holocene and late 
Pleistocene)—Consists of poorly to well sorted, 
interbedded, pebble- to silt-size alluvium and unsorted, 
matrix-supported, bouldery colluvium. Includes stream 
channel, low-terrace, and flood-plain deposits along 
valley floors of ephemeral, intermittent, and small 
perennial streams and colluvium deposits along valley 
sides

Colluvium and slopewash deposits, undivided (Holocene 
and late Pleistocene)—Weathered pebble- to clay-size 
particles of Cretaceous Pierre Shale and lesser amounts 
of cobble- to sand-size fragments of Proterozoic base-
ment rock and Tertiary quartz monzonite. Deposits are 
found on gentle slopes primarily along Soda Creek

Debris-fan deposits (Holocene and late Pleistocene)— 
Poorly sorted to moderately sorted, matrix-supported, 
gravelly, sandy silt to clast-supported, pebble and 
cobble gravel in a sandy silt or silty sand matrix. May 
include debris flows, hyperconcentrated flows, and flu--
vial and sheetwash deposits

PALUSTRINE DEPOSITS—Peat, clay, silt and sand deposited 
primarily by water in shallow basinal areas

Paludal sediments (Holocene to late Pleistocene)—Or-ganic-
rich, fine-grained sediments formed in swampy closed 
depressions where the water table is close to or slightly 
above the ground surface

PERIGLACIAL DEPOSITS—Deposits formed in cold environ-
ments by freeze-thaw action, solifluction, and nivation

Protalus-rampart deposits (Holocene and late Pleisto--
cene)—Unsorted, unstratified, angular rock fragments 
that form arcuate ridges at the downslope edge of 
existing or perennial snow fields. One deposit mapped 
on the northwest flank of Glacier Mountain

Solifluction deposits (Holocene and late Pleistocene)— 
Angular to subrounded pebbles, cobbles, and large 
boulders in a chiefly sandy matrix deposited in alpine 
and sub-alpine basins. Deposition is the result of slow, 
downslope flowage of water-saturated surficial de--
posits by frost creep and melt-water transport

Rock glaciers (Holocene or late Pleistocene)—Poorly sorted 
angular to sub-angular boulders, cobbles, gravel, and 
fine sediments in a matrix of firn or glacier ice. Down--
slope movement is the result of internal deformation of 
the ice core

GLACIAL DEPOSITS—Gravel, sand, silt, and clay deposited by 
ice

Neoglacial till (Holocene)—Heterogeneous deposits of 
poorly sorted, unstratified or poorly stratified, matrix-
supported, boulder, pebble, and cobble gravel in a silty 
sand matrix deposited by ice in the cirque at the head of 
Grizzly Gulch. The deposit has a slightly eroded irre-
gular topography with abundant boulders exposed at 
the surface, very little evidence of clast weathering, and 
almost no soil development

Glacial till, undivided (late and late middle? Pleisto-cene) 
—Heterogeneous deposits of poorly sorted, unstratified 
or poorly stratified, matrix-supported, boulder, pebble, 
and cobble gravel in a silty-sand matrix deposited ice in 
ground, lateral, and end moraines. May also include 
localized lenses of material transported by melt-water 
adjacent to ice. Weathering of clasts and soil devel-
opment is highly variable, though local variations may 
suggest differences between younger Pinedale (late 
Pleistocene) deposits and older Bull Lake (middle 
Pleistocene) deposits

Moraine deposits, undifferentiated (late and late middle? 
Pleistocene)—Includes glacial deposits generally sim--
ilar in texture and lithology to glacial till (Qti). Locally, 
however, the unit is stratified and well sorted sug-gest--
ing a possible fluvial component. The deposits under-lie 
well-preserved moraine crests, soil development is 
weak to moderate, and clasts are unweathered to highly 
weathered

Surficial deposits, undivided (Quaternary)—Shown only on 
cross sections. May include any of the above surficial 
deposits

BEDROCK

TERTIARY INTRUSIVE ROCKS—Primarily quartz monzonite 
porphyry, intruded between 35 to 45 Ma

Quartz monzonite porphyry of the Montezuma stock 
(early Oligocene to Eocene)—Buff to light-gray, coarse- 
to medium-grained, porphyritic quartz monzonite with 
blocky to tabular phenocysts of orthoclase, quartz, and 
plagioclase. Lesser constituents include hornblende, 
mag-netite, and sphene. Locally includes light-pink, fine- 
grained aplite dikes. Age of the stock is between 39.8 ± 
4.2 Ma (zircon fission-track age; Bookstrom and others, 
1987) and 35.0 ± 3.2 Ma (zircon fission-track age; 
Cunningham and others, 1994)

Quartz latite (Eocene)—White to light-gray, fine-grained 
quartz latite grading to rhyolite with rare quartz and 
feldspar phenocrysts. Similar porphyritic rock cor-rel--
ated with quartz latite intruded south of the quadrangle 
has a potassium-argon age of 41.4 Ma (Pride and 
Robinson, 1978)

Breccia (Eocene)—Intrusion breccia and/or hydrothermal 
breccia associated with porphyry intrusion in the Brew--
ery Hill region

Hornblende-biotite monzonite porphyry (Eocene)—Dark-
gray monzonite porphyry comprised of plagioclase, 
orthoclase, hornblende, and biotite phenocrysts in an 
aphan-itic groundmass. Plagioclase and orthoclase pheno--
crysts are typically less than 0.15 in. long, whereas 
subhedral blades of hornblende range up to about 0.3 
in. long. Biotite is pseudohexagonal and generally only 
0.1 in. long. Considered to be roughly equivalent in age 
to unit Tqpm (Ransome, 1911; Lovering, 1934)

Quartz monzonite porphyry, megacrystic variety (Eocene) 
—Buff- or light-brown-weathering, porphyritic, quartz-
plagioclase-orthoclase-biotite-hornblende monzonite 
containing megacrysts as long as 1.5 in. of orthoclase, 
quartz, and plagioclase in a medium- to coarse-grained 
matrix. Quartz phenocrysts are commonly partially re--
sorbed and embayed; biotite phenocrysts are euhedral. 
Porphyry at Brewery Hill yielded a potassium-argon 
age on biotite of 43.8 ± 1.5 Ma (Bryant and others, 1975)

CRETACEOUS SEDIMENTARY ROCKS—Thick sequences of 
shale, minor limestone, and sandstone deposited in a marine or 
beach environment

Pierre Shale (Upper Cretaceous)—Divided into a lower, 
middle, and upper part (Izett and others (1971). Only 
the lower and middle parts are exposed in the Keystone 
quadrangle. The lower part consists of massive, dark 
marine shale; the middle part is characterized by thick 
se-quences of marine silty shale interbedded with 
marine sandstone

Middle Part—Alternating sequences of black shale 
and silty sandstone. Three of six sandstone mem--
bers described by Izett and others (1971) are recog--
nized in the Keystone quadrangle

Hygiene Sandstone Member—Ridge-forming 
sandstone composed of massive, buff to light-
gray, locally calcareous, fine-grained sandstone 
that grades upwards into thinly bedded sand--
stone with rare trace fossils and shell frag--
ments. Thickness of the unit is estimated to be 
50 to 60 ft. Several hundred feet of shale sep-ar--
ate the Hygiene and Muddy Buttes Sand-stone 
Members

Muddy Buttes Sandstone Member—Thinly bed-
ded, fine-grained sandstone and shaly siltstone 
containing abundant trace fossils and ripple 
marks and scarce shell fragments. Thickness is 
estimated to be about 40 ft. The member over-
lies about 100 ft of shale above the Kremmling 
Sandstone Member

Kremmling Sandstone Member—Shaly siltstone 
and sandstone grading into blocky, fine-
grained sandstone with abundant trace fossils 
and ripple marks and scarce shell fragments. 
Thickness is about 40 ft

Sandstone members, undivided

Lower Part—Dark-gray, non-sandy, clayey marine shale, 
with rare, thin silty or sandy beds and bentonite 
layers. Shale outcrops exhibit conchoidal fracturing. 
The low-est 30 to 60 ft is calcareous, and calcite veins 
are com-mon near the conformable basal contact 
with the Niobrara Formation. Thickness of the 
lower part of the Pierre Shale in the Keystone 
quadrangle is 800 to 1,000 ft

Niobrara Formation (Upper Cretaceous)—Includes the 
upper Smoky Hill Shale Member and the lower Fort 
Hays Limestone Member. The Smoky Hill Shale Mem--
ber consists of dark-gray, platy calcareous shale and 
shaly limestone that weathers light gray. The Fort Hays 
Limestone Member is characterized by light-gray wea--
thering, micritic limestone beds ranging in thickness 
from only a few inches to a few feet. The formation is 
conformable above the Benton Shale

Benton Shale (Upper Cretaceous)—Thick sequence of dark-
gray to black, carbonaceous shale interbedded with 
silty shale and minor limestone. Thickness is less than 
250 ft in the thrust wedge near Muggins Gulch

Pierre Shale, Niobrara Formation, and Benton Shale, 
undivided (Upper Cretaceous)—Mapped in the north-
eastern part of the quadrangle where Tertiary intrusion 
of the Montezuma stock has altered the rocks to 
hornfels. Fine-grained, dark-gray to black, baked shale 
predominates

Dakota Sandstone (Lower Cretaceous)—Light-gray to white, 
fine- to medium-grained, well-sorted, massive sand--
stone and quartzite that crops out in the Brewery Hill 
region in the southwest part of the quadrangle. Small, 
scarce fragments of the sandstone are also present in 
thrust wedges along the Williams Range thrust

Jurassic and Triassic rocks, undivided—Shown only in 
cross section B–B'

PROTOROZOIC INTRUSIVE ROCKS—Granitic rocks belong--
ing to the Berthoud plutonic suite, which was emplaced about 
1,400 Ma (Tweto, 1987)

Silver Plume Granite (Middle Proterozoic)—Pink to pink-ish- 
gray, fine- to medium-grained, massive to mod-erately 
foliated granite consisting primarily of microcline, pla--
gioclase, and quartz, with minor to mod-erate amounts 
of biotite and/or muscovite. Abundant porphyritic tab--
u-lar potassium feldspar crystals locally exceed 1 in. in 
length. Silver Plume Granite has been dated at 1,422 ± 2 
Ma (uranium-lead zicron age; Graubard and Mattison, 
1990)

Intrusion breccia (Middle Proterozoic)—Large fragments 
of felsic (Xf) and hornblende (Xh) gneiss partially assim--
ilated in the northwest margins of the granite on Sheep 
Mountain (Yg)

Granite of Sheep Mountain (Middle Proterozoic)—A small 
body of pinkish-gray, massive to slightly gneissic, 
coarse-grained to pegmatitic, microcline-quartz-biotite 
granite that crops out on Sheep Mountain in the south--
east corner of the quadrangle. Abundant pink, Carls--
bad-twinned, microcline phenocrysts are up to two 
inches long. May be equivalent to Rosalie Granite east 
of the quadrangle emplaced 1,448 ± 9 Ma (U-Pb zircon 
age; Aleinikoff and others, 1993)

Proterozoic intrusives, undivided (Middle Proterozoic?)— 
Fine- to medium-grained, slightly porphyritic, dark-
gray rocks on the northwest flank of Porcupine Peak. 
Ground mass consists of plagioclase, pyroxene, and 
minor magnetite. Phenocrysts include plagioclase and 
augite or hornblende. Dike on Bear Mountain is com--
posed chiefly of potassium feldspar and minor opaque 
minerals

Pegmatite, aplite, and related rocks (Middle and Early 
Proterozoic)—Includes pegmatite, granite pegmatite, 
and aplite, all of which are composed of feldspar and 
quartz with accessory biotite, muscovite, magnetite, 
and hornblende

PROTEROZOIC METAMORPHIC ROCKS—Metasedimentary 
and metavolcanic rocks deposited 1,780 to 1,800 Ma (Premo and 
Fanning, 1997). Units mapped solely on the basis of lithology; 
stratigraphic sequence unknown

Migmatite (Early Proterozoic)—Rocks that have been 
heavily intruded by granitic material, commonly in a 
layer-parallel manner, and/or have been intensely de--
formed and heated to the point of partial melting. 
Country rock is composed chiefly of hornblende gneiss 
and minor felsic and amphibolite gneiss. The rock 
typically exhibits boudinage, sigmoidal structures, and 
numerous small, tight folds

Hornblende gneiss (Early Proterozoic)—Medium- to dark-
gray or dark-green, medium-grained gneiss consisting 
of hornblende and plagioclase with lesser amounts of 
quartz, biotite, pyroxene, and garnet. The rock is either 
massive with a distinct salt-and-pepper look, or layered 
due to the segregation of light (plagioclase and quartz) 
and dark (hornblende and pyroxene) minerals. Unit 
may include minor layers of felsic gneiss (Xf) and 
amphibolite gneiss (Xa). 

Interlayered felsic and hornblende gneiss (Early Protero-
zoic)—Hornblende gneiss (Xh) interlayered with felsic 
gneiss (Xf) in roughly equal proportions. Thickness of 
individual layers is commonly a few inches to a few feet 
but locally may exceed several tens of feet. May also 
locally include layers of amphibolite (Xa).

Felsic gneiss (Early Proterozoic)—White to light-gray, 
medium- to coarse-grained and slightly porphy-ro-blas--
tic, massive to moderately well-foliated microcline gneiss. 
Where massive, the rock is composed primarily of 
microcline, plagioclase, and quartz and contains euhe--
dral magnetite crystals as long as 0.3 in. Foliated felsic 
gneiss contains thin, discontinuous, biotite-rich layers 
but little to no magnetite. Small amounts of hornblende 
and garnet may locally be present in either variety

Interlayered felsic and amphibolite gneiss (Early Protero-
zoic)—Felsic gneiss (Xf) interlayered with and amphi-
bolite gneiss (Xa) on Wise Mountain. Felsic layers range 
up to several tens of feet thick; amphibolite layers are 
generally less than a foot thick

Amphibolite gneiss (Early Proterozoic)—Dark-gray to 
greenish-black, fine-grained, massive gneiss composed 
almost entirely of hornblende and lesser plagioclase. 
Typically interbedded and gradational with hornblende 
gneiss (Xh)

Biotite gneiss (Early Proterozoic)—Fine-grained, light- to 
medium-gray gneiss composed primarily of quartz, 
plagioclase, and biotite and accessory magnetite, silli--
manite, garnet, and/or cordierite. The rock commonly 
weathers to a rusty brown color. Its texture is typically 
equigranular, which gives it a “salt and pepper” appear--
ance in outcrop, although in places it is schistose to 
migmatitic

Sillimanitic biotite gneiss (Early Proterozoic)—Medium- 
to dark-gray, well-foliated gneiss consisting primarily of 
quartz, plagioclase, biotite, sillimanite, and locally, 
garnet. Microcline, muscovite, tourmaline, and cordier--
ite are lesser constituents. Sillimanite is easily recog--
nizable either as cloudy white rods and bundles or 
small, flattened elongate pods up to about 2 in. long. 
Locally, the rock is migmatitic

MAP SYMBOLS

Contact—Dashed where approximately located

Fault—Dashed where approximately located; dotted 
where concealed; arrows show apparent direction 
of relative lateral movement, ball and bar on down--
thrown side

Thrust fault—Sawteeth on upper plate. Dashed where 
approximately located; dotted where concealed. 
Arrow shows dip and dip direction of fault surface

Relative movement of blocks above and below thrust 
fault—Shown only on cross section. Circle with dot 
indicates “towards;” circle with X indicates “away”

Fracture zone—Broad zone of highly fractured and 
locally sheared bedrock

Shear zone—Broad zone of sheared bedrock

Synform of Precambrian age—Showing axis and dir-
ection of plunge; overturned to nearly isoclinal 
folds with steeply- to moderately-dipping axial 
planes

Syncline of Laramide or younger age—Showing axis; 
broad open folds with nearly vertical axial planes

Anticline of Laramide or younger age—Showing axis 
and direction of plunge; broad open folds with 
nearly vertical axial planes

Scarp of gravitational origin—Linear scarps parallel 
to mountain ridges are sackung features that indi--
cate deep-seated rock creep, ridge-spreading move--
ment, and slope failure in response to gradual 
gravitational movement of rock masses. Linear and 
arcuate scarps associated with landslides indicate 
recent slope failure. Hachure pattern on down--
thrown side of scarp

Strike and dip of planar feature

Bedding—Measured in Cretaceous sedimentary rocks

Inclined

Foliation—Foliation is typically defined by com--
positional layering in Proterozoic metamorphic 
rocks
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Vertical

Alignment of inclusions—Alignment of the long 
axis of inclusions of metamorphic rocks within 
igneous bodies
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Vertical

Flow foliation—In igneous rocks

Inclined

Fault
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Vertical

Joint
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Vertical

Fracture cleavage in baked shale—Showing strike 
and dip

Inclined

Fold axis—Hinge lines of small folds. Showing bear--
ing and plunge; may be combined with foliation 
symbols

Moraine crest—Crest of prominent lateral and end 
moraines

Area densely intruded by pegmatite or granitic 
material

Hornfels metamorphism—Tertiary intrusion of the 
Montezuma stock has baked Cretaceous sedi--
ments in the northeastern part of the quadrangle. 
Intensity of hornfels alteration sufficient so that 
distinction between shales of the Pierre, Niobrara, 
and Benton Formations was commonly not 
possible

Hydrothermal alteration—Area of pyritized, silici--
fied, and sericitized rocks; affects rocks in the 
Saints John and Swandyke mining areas
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