| Era | Period | | Millions of
Years Ago 1) | Major Geologic Events (map color) 2) Type of Deposits/Aquifer Type | Significant Features and Locations | |-------------------------------|----------------------|------------------|-----------------------------|--|---| | Cenozoic
(Age ofMammals) | Quaternary | | Present-2.6 | Quaternary: glaciation, development of present topography and stream systems unconsolidated sand and gravel, silt, and clay/alluvial aquifers | Great Sand Dunes; South
Platte River Valley | | | ary | Neogene | 2.6-23 | Cenozoic Extension: Uplift, block faulting, and formation of deep basins semi-consolidated sand and gravel, mudstone and siltstone, basalt flows/bedrock sedimentary aquifers, local fractured bedrock aquifers | San Luis Valley, Glenwood
Canyon, Grand Mesa | | | Tertiary | Paleogene | 23-66 | Transition to extension: Widespread volcanism lava flows, volcanic breccias, welded tuff, ash beds, conglomerate, interbeds of sand and gravel/fractured crystalline rock and localized bedrock sedimentary aquifers | San Juan volcanic
field, Creede Caldera,
Mount Princeton Batholith | | Mesozoic
(Age of Reptiles) | Cretaceous | | 66-145 | Laramide mountain building event: compressional tectonism, uplifting ranges and development of deep basins, K/P boundary and end of "Age of Dinosaurs", and beginning of "Age of Mammals" semi-consolidated iinterbedded sandstone, conglomerate, siltstone and mudstone with some coal/basin-centered bedrock sedimentary aquifers Interior Seaway: regional downwarp with flooding by shallow seas marine shale, limestone, offshore sandstone members, widespread delta and shoreline sandstone deposits with coal/regional bedrock sedimentary aquifers | Denver Basin, Front Range
Upift, Sawatch Uplift,
Grand Hogback, Pikes Peak,
South Park, Roan
Cliffs, oil shale, coal
Shale badlands, Mesa Verde
National Park, ammonite
fossils, Book Cliffs, oil and
gas, coal | | | Jurassic
Triassic | | 145-201 | Mesozoic Sandstones: relatively stable continent with semi-arid and arid conditions sandstone, siltstone, mudstone with minor conglomerate and non-marine limestone/regional bedrock sedimentary aquifers | Dinosaur National Park,
Colorado National Monument
uranium deposits | | Paleozoic
(Age of Fishes) | Permian | | 252-299 | Ancestral Rocky Mountains: uplifting ranges and development of basins with periods of marine flooding; restricted circulation and | Red Rocks Park, Flatirons,
Paradox Valley, Maroon
Bells, crinoids, gypsum beds
in Eagle Valley, evaporite
collapse features | | | Pennsylvanian | | 299-323 | high evaporation sandstone, conglomerate, siltstone, and mudstone; marine shale, limestone, and thick accumulations of salt and gypsum/basin-centered bedrock sedimentary aquifers, localized saline aquifers | | | | Mississippian | | 323-359 | invertibrates, evolution vertibrates, Cave of the | | | | Devonian | | 359-419 | | Glenwood Canyon,
proliferation of shelled
invertibrates, evolution of
vertibrates, Cave of the
Winds, Glenwood Hot Springs | | | Silurian | | 419-444 | | | | | Ordovician | | 444-485 | | | | | C | Cambrian | 485-541 | | | | Precambrian | Pr | oterozoic
Eon | 541-2,500 | Precambrian basement: continental expansion, deposition of sedimentary rocks, regional metamorphism, deformation, igneous intrusions Gneiss and schist with a variety of composition and texture, intrusive rocks of varying composition, localized quartite /fractured | Front Range "core", Pikes
Peak, Rocky Mountain | | | Archeozoic
Eon | | 2500-4,600 | crystalline rock aquifers | National Park, soft-bodied marine organisms | ¹⁾ Not scaled to time. ²⁾ After Raynolds and Hagadorn (2017).