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ABSTRACT

Coal and coal-related stratigraphy may contain elevated concentrations of critical minerals
and/or materials as defined by the U.S. Geological Survey and U.S. Department of Energy.
Based on recent limited sampling results, Late Cretaceous-Paleocene Denver Formation coal in
the Denver Basin contains elevated concentrations of rare earth elements (REEs) ranging from
359 to 1,026 parts per million total REEs. Elevated concentrations of REEs occur in lignite-
dominated beds of the Upper Paleocene portion of the Denver Formation within the Ramah-
Fondis coal field located in the Denver Coal Region. These REE concentrations are higher than
most of the concentrations reported for coals and coal-related stratigraphy in the Uinta and
Greater Green River coal regions in western Colorado. Shallow (<150-feet of overburden)
Denver Formation lignite occurs in a wide area (>660 square miles), in four informal coal zones
from ~1 to 30 feet thick, and contain abundant partings including tonstein, clay (especially
kaolinite), and other lithologies. Although the lignite might not be a resource with regards to
electricity generation, it could be a potential resource with regards to REEs - the deposits are
widespread, at a relatively shallow depth, and may contain sufficient tonnage to be a resource
albeit at a lower concentration than other conventional economic REE deposits. In order to
better determine the potential for REE resources in the Denver Coal Region, future
investigations should include: additional sampling and analysis of available coal seams in the
Denver Formation as well as the Upper Cretaceous Laramie Formation coals; mineralogical
studies to determine the mode of REE occurrence; extraction/recovery tests to determine the
recovery potential of REEs; and additional assessment of other potential REE-bearing
formations in the region including the Fox Hills Sandstone and the Denver Basin Group D1/D2
regional paleosol.



INTRODUCTION AND BACKGROUND

Coal and coal-related stratigraphy may contain elevated concentrations of critical minerals
especially with regards to the rare earth elements (REEs) (Nassar and Fortier, 2021; Nassar and
others, 2025; DOE, 2023). The U.S. Department of Energy (DOE) determined that relatively large
potential resources of REEs may exist in some U.S. coal deposits, and/or in the byproducts of
coal combustion (e.g., fly ash), but these potential resources likely vary significantly by location
(DOE, 2017; DOE, 2022). With the assistance of the Colorado Geological Survey (CGS), the
University of Wyoming and University of Utah each conducted DOE funded carbon ore, rare
earth, and critical mineral (CORE-CM) investigations in select coal regions in Colorado to
determine if coal, and related deposits, contain elevated concentrations of critical minerals.
These investigations were mainly conducted within the Greater Green River Coal Region (Sand
Wash Basin) and Uinta Coal Region (Piceance Basin), Colorado (Figure 1), and the results are
provided in University of Wyoming (2024) and Coe and others (2024).
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Figure 1 — Location of select Colorado coal regions where recent CORE-CM projects were completed.
These investigations concentrated on coal fields in northwest and western Colorado. Historic coal
mines (Carroll and Bauer, 2001) are also shown.



A limited investigation (10 samples from one exposure) was also conducted on the Late
Cretaceous-Paleocene Denver Formation coal deposits in the Denver Basin (Figure 2) by the
CGS. Although the Denver Formation coals are dominantly lignite and are not currently
economic coal targets (nor have they been extensively mined in the past), these deposits
contain other characteristics (e.g., mudstones, altered volcanic ash/kaolinite, partings)
associated with elevated critical minerals (e.g., REEs) observed in other coal regions. For
example, lignite deposits below kaolinitic zones in the Bear Den Member of the Paleocene
Golden Valley Formation in North Dakota contain elevated concentrations of REEs well over the
DOE proposed commercial viability benchmark of ~300 parts per million (ppm) total REEs
(Moxness and others, 2023; 2025). Additionally, the Denver Formation coal seams may be
relatively accessible to mining operations as they occur at the surface to <150 feet deep in a
relatively large area as shown on Figure 3.
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Figure 2 — Location of the Ramah-Fondis coal field (study area) within the Denver Basin (modified from
O’Keeffe and others, 2020).



The CGS collected samples from an exposure of these deposits in the Ramah-Fondis (Ramah)
coal field, Denver Coal Region, in the Denver Basin (Figure 2 and 3). The results of the CORE-CM
investigation in the Greater Green River and Denver coal regions are included in the final report
submitted by the University of Wyoming (2024) to the DOE. Of the >420 sample results, four of
the top ten total REE concentrations (ranging from ~580 to 1,026 ppm) were detected in
samples collected from the Denver Formation lignite (the highest total REE concentration
detected was ~1,313 ppm from an area in Wyoming). Although a summary of the results is
provided in the University of Wyoming (2024) report, this document includes more details
associated with the Denver Formation sampling, a detailed presentation of the results, and
recommendations for future work.
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Figure 3 — Ramah-Fondis coal field and sampling location map (red X) showing the general extent of
Denver Formation lignite at depth (Carroll, 2006). The historic mines shown on the western edge of the
region are associated with the Laramie Formation.



Background

The Denver Coal Region extends into Wyoming and includes the Denver and Cheyenne basins
which are separated by the Greeley arch where the coal-bearing formations have been eroded
(Carrol, 2004) (Figure 2). The Denver Basin (or Denver-Julesburg Basin, DJ Basin) is an
asymmetric foreland basin that formed during the Laramide uplift of the Front Range between
the Late Cretaceous and the middle Eocene (Figure 2) (Deschesne and others, 2011). Coal
deposits in the Denver Basin occur in the Denver Formation, Denver Basin Group, and the lower
portion of the underlying Cretaceous Laramie Formation. Although no coal mining currently
occurs in this coal region, about 135 million tons of coal were produced from ~385 primarily
underground mines between 1864 and 1988 (Carroll, 2004). Most of the coal was produced
from the Laramie Formation due to its better quality and, to a much lesser extent (likely less
than 0.1% according to Soister [1974]), the Denver Formation.

Coal seams occur in the Upper Paleocene portion of the Denver Formation within the Denver
Basin Group (Figure 4). Denver Basin Group deposits represent a change from a “low-relief
coastal plain (Upper Cretaceous Laramie Formation) to a more dynamic fluvial plain dominated
by the Front Range immediately to the west” (Dechesne and others, 2011; page 8) within the
Denver Basin. The Denver Formation spans the K/Pg boundary, is associated with the D1
sequence of the Denver Basin Group (Raynolds, 2002; Deschesne and others, 2011) (Figure 4),
and ranges in thickness between 600 to 1,580 feet. In the southern portion of the Denver Basin,
in the Ramah-Fondis coal field and beyond, a regional paleosol occurs between the upper
Denver Formation (D1 sequence) and the Eocene Dawson Formation (D2 sequence) within the
Denver Basin Group (Raynolds, 2002; Deschesne and others, 2011) (Figure 4).
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The Denver Formation consists primary of claystone, siltstone, and fine-grained sandstone but
also contains minor conglomerates as well as local lava flows along the Front Range (Nichols,
1999). Coal beds and carbonaceous shale occur in the upper 300 to 500 feet (Upper Paleocene)
portion of the Denver Formation east of the basin axis (Kirkham and Ladwig, 1979; Tremain and
others, 1996; Nichols, 1999). A portion of the coal lies within 200 feet of the surface, with a few
outcrops at the surface, however, overburden thicknesses are variable in the area due to local
stream erosion (Nichols, 1999). Carrol (2006) indicates that a portion of the Denver Formation
occurs <150-feet from the surface in an area extending from El Paso to Adams County as shown
in Figure 3.

As reported by Eakins and Ellis (1987), thicknesses of the coal zones within the Ramah field are
variable, lenticular, and range from 1 to 30 feet thick although most have much lower average
thicknesses. Four informal coal zones were identified in this area including, from bottom to top,
the Bijou, Kiowa, Comanche, and Wolf (Figure 5) based on drill hole data and their thicknesses
range from 1-19, 1-26, 1-30, and 1-19 feet, respectively (Eakins and Ellis, 1987). Nichols (1999)
indicates the principal beds range in thickness from 5 to 10 feet while the Wolf bed is the
thickest and ranges between 18 and 28 feet thick. Thinner lignite beds also occur.
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Figure 5 — General stratigraphy and coal bed nomenclature of the Denver Formation, Ramah-Fondis
coal field, Denver Basin Coal Region, Colorado (from Roberts, 2007).



As reported by several authors (Soister, 1974; Kirkham and Ladwig, 1979; Nichols, 1999), the
Denver Formation coal beds are primarily lignite with less subbituminous coal. The lignite beds
contain abundant partings between < 1 inch to more than 2 feet, which are primarily clay but
also include volcanic ash, clay, claystone, siltstone, or clayey/silty sandstone (Kirkham and
Ladwig, 1979; Nichols, 1999). The number of partings varies from a couple to dozens and can
vary laterally (Kirkham and Ladwig, 1979). Reportedly, the clay partings range from 3 to 4-
inches thick and are primarily kaolinite, a potential source of aluminum. Partings can range
from 5 to 30% of the total thickness of a bed. As described by Kirkham and Ladwig (1979; page
58):

“Denver Formation lignite is brownish-black to black, and weathers, slacks, and
disintegrates rapidly. Quality of the lignite varies dure to the number and thickness of
non-coal partings and the physical character and rank of pure lignite. Most analyses
indicate the lignite ranks as lignite A, however, thin intervals within thick lignite beds
may rank as high as subbituminous C coal. The Comanche bed of the southern lignite
area appears to be the highest quality lignite bed in the entire Denver Formation.”

Analyses of lignite beds from the Denver Formation across the Denver Basin generally indicate
(as-received basis): heat values between 4,000-7,500 British thermal units (btu) per pound (lb),
22-40% moisture, 8-30% ash, and 0.2-0.6% sulfur (Kirkham and Ladwig, 1979). Historic coal
mines in the Ramah coal field (Figure 3) produced a small amount (3,047 tons) of coal from the
Denver Formation between around 1909 to 1940 (Kirkham and Ladwig, 1979). About nine
mines operated during this time. Lignite reserves in the Ramah area were estimated at 474
million tons (Soister, 1974; Landis, 1959). Kirkham and Ladwig (1979), based on a comparison of
previous estimates, indicate that there is potentially 10 to 15 billion tons of Denver Formation
lignite within the entire Denver Basin (includes the Ramah and several other coal fields) within
beds >4 feet thick and <1,000 feet deep.



INVESTIGATION

Samples were collected and analyzed from a Denver Formation coal seam within the Ramah-
Fondis coal field to determine if elevated concentrations of critical minerals occur within these
coals and related stratigraphy. Ten samples were collected from a coal bed at an exposure
(Figure 3 and 6) located between Calhan and Ramah, El Paso County, Colorado. Based on Eakins
and Ellis (1987; Plate 12B), the outcrop likely contains a portion of the Kiowa coal bed (Figure 5)
and is near the historic Purdon Coal Mine (Soister, 1974). A detailed geologic log of the outcrop
is provided in Appendix A.

About 12.5 feet of Denver Formation is exposed at this location and capped by sandy soil and
interbedded mudstone, siltstone and eroded Denver Formation lignite (Figure 6). Samples were
collected along a ~9.4-foot-long channel excavated exposing the less weathered material at
depth. The upper ~3 feet of the outcrop was not sampled as only minor beds of lignite occurred
in this interval. Two- to 23-inch-long channel samples were collected from the outcrop based
on field observations. Lignite seams appeared to extend below the exposure but were not
sampled.

sample

interval

Figure 6 — Photos of the Denver Formation coal sampling location in the Ramah-Fondis coal field.
Hammer is ~13-inches long. Left: Channel samples collected from the area mostly below the ledge in
the upper portion of the photo (first sample collected at the ledge base in carbonaceous mudstone, see
Figure 5 sample GRCO-OC-23-DB-01). Right: Close-up of the Denver Formation lignite showing
fractures, numerous partings, iron oxides, and weathered nature of the outcrop.



Due to the numerous partings, some of the samples included multiple lithologies. The coal
exposure is mostly weathered, fractured, and friable lignite with abundant partings (Appendix
A). Partings include mudstone, carbonaceous mudstone, silty mudstone, tonstein and/or clay.
Abundant secondary iron oxides and/or gypsum were frequently observed in fractures (Figures
7 through 9). Some partings appeared to be tonstein (Figure 8 and 9) but it was difficult to
confirm if these layers were altered volcanic ash in the field. A summary of the geologic log is
included in Table 1.

oo
5|8 2z 3
= - c 8| g .
&€ Sample ID Interval (inches) |2 £ Rock Type Description
2|5 2E|E
e = 5
GRCO-OC-23-DB-01 73.80 7 Carbonaceous [Mudstone, brtlen to gray, coal laminations, plant debris, iron oxide
mudstone on fractures, fissle, shaly.
Sample includes 4" of carbonaceous mudstone, 3" of lignite, and 4"
GRCO-OC-23-DB-02 80-91 1 Carbonacelouls ofc?rbqnaceous mudlstone. Farbonaceous muldstf)nel includes coal
mudstone, lignite [laminations, gypsum/iron oxide on fractures. Lignite is brown to
black, cleats, weathered, gypsum/iron oxide on fractures.
Lignite, brownish black to black, gypsum and yellowish brown iron
GRCO-0C-23-DB-03 91-110 19 Lignite oxide on fractures, very weathered, cleats, mostly dull with some
bright coal.
Clay (tonstein?), |Two layers of tonstein? with 1" carbonaceous mudstone in
GRCO-0C-23-DB-04 110-113 3 carbonaceous |between, tonstein is buff, lensic, iron oxide stained, fissile, platy
mudstone clay with silt.
GRCO-0C-23-DB-05 113-122.5 9.5 Lignite, tonstein? |Lignite with 1" layer of buff tonstein.
GRCO-0C-23-DB-06 122.5-124.5 2 Tonstein?, lignite Two beds of tonstein? with 1-2" of lignite, buff, lensic, friable, coal

laminations, platey clay with little silt.

Denver Formation

Lignite with trace interbed of tonstein?, black to brownish black,
GRCO-0C-23-DB-07 124.5-139.5 15 Lignite interbeds of carbonaceous mudstone, weathered, gypsum and
reddish brown iron oxides on fractures.

Mostly lignite with ~1.5 inches total of two or three tonstein?
Lignite layers and 2" of carbonaceous mudstone. Lignite is brown to dark
carbognacelous gray to black, fractured, iron oxides on fractures. Tonstein? layers
GRCO-0C-23-DB-08 139.5-152.5 13 mudstone are light to dark brown to buff to light pinkish, friable, fissle, clay
o with little silt, iron oxide and gypsum on fractures. Carbonaceous
tonstein? . S - .
mudstone is black, coal limainations, clayey, with iron oxide and
|sypsum in fractures.

Denver Coal Region, Ramah/Fondis coal field, Colorado (39.08362, -104.22093)

Lignite, black to brownish black, cleats, reddish to yelllowish brown
GRCO-0C-23-DB-09 152.5-162.5 10 Lignite iron oxide and gypsum on fractures, mostly dull with little bright,
trace reddish brown resin, blocky, conchoidal fractures.

Lignite, black to brownish black, cleats, reddish to yelllowish brown
iron oxide and gypsum on fractures, mostly dull with little bright,
trace reddish brown resin, blocky, conchoidal fractures. Small (1-
inch) carbonaceous mudstone at base.

GRCO-0C-23-DB-10 162.5-185.5 23 Lignite

NOTE: Channel samples from the top to road grade stratigraphically at the outcrop.

Table 1 — Sampling and geological summary of the Denver Formation coal seam sampling site, Ramah-
Fondis coal field, Denver Basin, Colorado. See Appendix A for the detailed geologic log.



Figure 7 — Close-up photo of the Denver Formation lignite exposure (scale is in millimeters) showing
fractured nature of the lignite, iron oxides, and gypsum (white).

Figure 8 — Photo of continuous clay and/or tonstein layers (light colored layer above the hammer) in
the Denver Formation lignite (hammer is ~13-inches long).
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Figure 9 — Close-up photo of the clay and/or tonstein layers shown in Figure 6 (hammer is ~13-inches
long).

Samples were collected in clean labeled plastic double bags and provided to the University of
Wyoming for analysis. The mass of individual samples collected was at least 100-200 grams of
material to generate at least 5 grams of coal ash necessary for major and trace element
analyses. Samples were first ashed to drive off volatile matter prior to whole rock and trace
element analyses. Most of the ashing was conducted by either ALS Global (ALS) (Brisbane,
Australia) or Hazen Research in Golden, CO, following ASTM International standards (University
of Wyoming, 2024; see Appendix 2b and 2c). Trace elements were determined by inductively
coupled plasma mass spectrometry (ICP-MS) and oxides by ICP-AES (atomic emission
spectrometry). Most of the sample analyses were carried out at ALS in Vancouver, British
Columbia, Canada, following ashing and further preparation at ALS in Reno, NV (University of
Wyoming, 2024).

The major and trace element laboratory results are summarized in Tables 2, 3, and 4. Lignite
dominant intervals are high-ash lignite (e.g., ash > 15%; Wood and others, 1983) with ash
contents ranging from 13.19 to 21.03%. A few lignite intervals are medium-ash coal (8 to 15%
ash) (Table 2). The ash contents of the parting-rich beds ranged from 36.42 to 62.17%. Lignite
coal classes could not be verified because the calorific value was not measured. However, most
of the coal appears to be lignite with interbedded subbituminous C coal in places.

Elevated concentrations of SiO; (~44.3-55%) and Al,O3 (~32.6-40.1%) in the non-lignite samples
indicate the presence of quartz sand, feldspar, and clay in these samples (Table 2). Elevated
aluminum concentrations may be associated with clay-rich partings, especially kaolinite as
determined in past investigations. As reported by Kirkham and Ladwig (1979), the kaolinite-rich
partings comprise 5 to 30% of the total lignite bed thickness in places and could potentially be a

11



source of aluminum. Total REE (TREE) concentrations of all the samples ranged from 140.7 to
1,026.3 ppm with mean and median concentrations of 452 and 372 ppm, respectively (Table 3).
Samples collected from the lignite dominant zones generally had the highest TREE
concentrations enriched in light REEs (LREE) ranging from ~384.9 to 1,026.3 ppm. The highest
TREE concentration was detected in the 10-inch channel sample located near the base of the
outcrop. This interval is dominantly lignite with iron oxide and gypsum filled fractures where
traces of reddish-brown resin-like material were observed. The highest concentrations of
barium, strontium, and uranium were also observed in this interval (Table 4) which may
indicate the presence of uranium-bearing celestite (SrSO4) and/or barite (BaSO4) in this interval.
Analysis of samples from the lignite-dominant intervals general indicates the presence of high-
barium coals >750 ppm (Hao and others, 2022).

The lignite samples containing relatively higher TREE samples are enriched in LREE with several
reported concentrations over five times the bulk continental crust concentrations as reported
by Taylor and McClennan (2003) (Table 3). Analyses of two intervals containing abundant
partings detected elevated but relatively lower TREE concentrations (355.8 and 359.1 ppm)
when compared to the lignite samples. Additional elevated concentrations of strontium, a
critical mineral, were also detected in these samples (Table 4). Other critical minerals were
detected at five times the bulk continental crust concentration including barium (6 samples),
strontium (5 samples), tungsten (3 samples), zirconium (2 samples), and niobium (1 sample).
Elevated concentrations of thorium and uranium were also detected in 5-6 samples (Table 4).

o
= Ash
Sample ID Interval Thickness %é" Rock Type Cunient Si0, | AlL,O; | Fe,0; [ CaO | MgO | Na,0 [ K,0 Cr,0; [TiO,| MnO | P,Os | SrO | BaO | Total | LOI
(inches) (inches) [}
GRCO-0C-23-DB-01 73-80 7 Ca::;i::“s na |443| 326 | 087 |059] 031 [ 0.22 | 0.39 | <0.002 [1.04| 0.01 | 0.03 |0.01| 0.04 [101.61| 21.2
Carbonaceous
GRCO-0C-23-DB-02 80-91 1 mudstone, 4696 |508| 37 | 153 |4.65| 0.45 | 0.44 | 0.61 | 0.003 [1.66| 0.03 | 0.06 |0.06| 0.07 | 99.89 | 2.53
lignite
GRCO-0C-23-DB-03 |  91-110 19 Lignite 1319 |288| 21 | 681 | 25 [ 154 | 12 | 022 | 0.003 | 12| 011 | 073 | 0.4 | 054 | o167 | 412
Clay (tonstein?),
GRCO-OC-23-DB-04 | 110-113 3 carbonaceous | 57.14 | 55 | 355 | 120 |198] 029 [ 034 | 1 | <0.002[204| 0.01 | 0.06 |0.03| 0.05 | 99.46 | 1.87
mudstone
Lignit
GRCO-OC-23-DB-05 | 113-122.5 9.5 tof;'e:? 1751 |409| 31 | 39 [149| 078 | 056 | 037 | 0.012 |1.11| 0.06 | 1.38 |0.39| 047 | 98.09 | 2.26
Tonstein?,
GRCO-OC-23-DB-06 | 122.5-124.5 2 anite 6217 |51.9| 401 | 1.6 [3.02| 04 | 022| 03 |[<0.002]|157| 0.01 | 0.06|0.05| 0.16 | 101 | 161
GRCO-OC-23-DB-07 | 124.5-139.5 15 Lignite 1429 |37.3| 209 | 332 [ 169 1.08 | 0.69 | 0.36 | 0.006 |1.69| 0.07 | 0.08 |0.21| 0.18 | 94.23 | 249
Lignite,
GRCO-0C-23-DB-08 | 139.5-152.5 13 “:i‘;’:;i:“s 3642 |48.3| 373 | 214 [5.58| 042 | 041 | 055 | 0.003 |1.49| 0.03 | 0.1 [0.07| 01 | 9871|222
tonstein?
GRCO-0C-23-DB-09 | 152.5-162.5 10 Lignite 1827 | 28.7| 239 | 556 [22.3| 1.08 | 0.75 | 0.7 | 0.002 |1.16| 0.08 | 2.52 |0.64| 0.68 | 90.01 | 2.47
GRCO-OC-23-DB-10 | 162.5-185.5 23 Lignite 21.03 |393| 282 | 47 [144| 076 | 033 | 031 | 0.003 |1.43| 0.05 | 0.12 |0.19| 0.28 | 92.84 | 2.77

NOTES: Channel samples from the top downward stratigraphically at the outcrop. All results in %. LOI - loss on ignition

Table 2 — Major element laboratory results (ash basis) by XRF analysis, Ramah-Fondis coal field,
Denver Basin, Colorado.
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LREE HREE
2= |e LREE/H
Interval c 2|5 w
Sample ID (inches) 25|88 Rock Type Total REE Total LREE Total HREE REE La Ce Pr Nd | Sm | Eu | Gd Th Dy | Ho | Er [ Tm | Yb | Lu Y
inehes 2£|6 ratio
=
Carbonaceous
GRCO-0C-23-DB-01 73-80 7 - 140.7 120.9 19.8 6.1 27.4 | 545|658 24 |419| 1 3.23 | 048 | 2.84|0.55( 1.37 (0.22| 1.5 [0.22|12.6
Carbonaceous
GRCO-0C-23-DB-02 80-91 11 mudstone, B55.8 297.4 58.5 5.1 65.5| 132 | 163 | 60.3 (119 28 ( 866 | 1.3 | 7.9 |1.53)| 435|0.61| 3.84|0.62|38.3
lignite
GRCO-0OC-23-DB-03 91-110 19 Lignite 582.5 468.9 113.6 4.1 [109.5| 205 | 24.1| 939 | 17.1|4.37| 14.95| 2.18 | 13.2 | 2.64| 7.37 [ 1.13| 6.66 | 1.05| 79.4
Clay (tonstein?),
GRCO-0C-23-DB-04 110-113 3 carbonaceous 1215 96.9 24.6 39 18.1 | 43.2 | 556 21.1 | 46 |1.09| 3.23 | 0.53 (3.15|0.61| 1.89 (0.31 2.09 ( 0.31| 15.7
mudstone
GRCO-0C-23-DB-05 113-122.5 9.5 Lignite, tonstein? 762.8 648.7 114.1 57 |162.5| 293 | 32 |118.5| 20.6 | 5.03| 17.05| 2.49 | 14.9|2.95| 8.13 | 1.17| 7.41 | 1.13| 75.9
GRCO-0C-23-DB-06 | 122.5-124.5 2 Tonstein?, |igniten 207.4 175.3 321 55 374|793 |9.71| 35.8 (6.45(1.68( 4.98 | 0.78 | 438 0.81| 2.28 | 0.36| 2.36 | 0.39( 20.7
GRCO-0C-23-DB-07 | 124.5-139.5 15 Lignite 5795 472.4 107.1 4.4 101 | 217 ( 25 | 93.8 | 17.5|4.28| 13.8 | 2.09 | 12.7 (2.69| 7.71 | 1.14| 7.4 | 1.22|72.2
Lignite,
GRCO-0C-23-DB-08 | 139.5-152.5 | 13 ca';izr's:;:“ B59.1 307.0 21 59 |702(1375|166| 60.7 | 11.1| 2.9 | 8.09 | 1.24 | 7.18 | 1.36 | 3.78 | 0.61 | 3.66 | 0.56 | 33.7
tonstein?
GRCO-0C-23-DB-09 | 152.5-162.5 10 Lignite 026.3 904.0 122.4 7.4 277 | 393 | 415|1455( 22 [5.6219.35| 2.62 | 15.7|3.01| 7.97| 1.2 | 7.38 | 1.13| 83.4
GRCO-0C-23-DB-10 | 162.5-185.5 23 Lignite 84.9 317.1 67.9 4.7 69.6 | 142 | 17.1| 64.3 | 11.7 [ 2.85( 9.56 | 1.43 | 8.56 | 1.68| 4.76 | 0.72| 4.66 | 0.74| 45.3
Bulk continental crust (Taylor and McLennan, 2003, see Table 4) 16 33 3.9 16 | 35| 11| 33 06 | 3.7 [0.78( 2.2 (032 2.2 (03| 20
NOTES: Channel samples from the top downward stratigraphically at the outcrop. All results in ppm. HREE - heavy REEs, LREE - light REEs, TREE - total REEs.
Gray highlighted results indicate results equal to or greater than 5x the bulk continental crust concentrations reported by Taylor and McLennan (2003).
Table 3 — REE trace element laboratory results (ash basis) by ICP-MS analysis, Ramah-Fondis coal field,
Denver Basin, Colorado.
Other elements (light blue = critical minerals)
=le
Interval 29| u A .
Sample ID inch < s 239 Rock Type Ba | Co Cr Cs | Cu| Ga Ge | Hf | Mo | Nb Ni Pb| Rb | Sb| Sc | Sn Sr Ta | Te| Th Ti U \" W [ Zn| 2Zr
(inches) 2E(§
=
GRCO-OC-23-DB-01 | 73-80 7 Car;b:d":tf;‘:us 365 |na| 7 [059|na|413|na|619| na |282| na |na|104|na| 8 |18| 114 | 16 |na|127| 071 | 298| 69 | 16 | na | 236
GRCO-0C-23-DB-02 80-91 11 Carbonace.ou.s 617 | na| 25 [0.51| na| 541 | na|122( na [415| na na | 144 na (183 41| 535 | 2.4 [ na|22.8| 1.12 |5.14| 157 | 3.1 | na | 487
mudstone, lignite
GRCO-0C-23-DB-03 91-110 19 Lignite 4860 | na 37 | 018 na| 512 na|106| na [406| na na | 61 | na|207|35|3490 | 1.8 [ na|19.3| 0.81 | 5.48| 170 |11.2| na | 432
Clay (tonstein?),
GRCO-0C-23-DB-04 110-113 3 carbonaceous 473 | na| 11 [059| na | 52,6 | na [ 10.5| na | 41.4| na na | 209 na (13246 275 [ 24 | na|173| 1.33 (413|100 | 2.5 | na | 434
mudstone
GRCO-0C-23-DB-05 113-122.5 9.5 Lignite, tonstein? | 4390 | na 90 | 038 na| 483 | na|114| na [41.2]| na na | 9.7 | na|31.8]|33|3490| 1.9 [ na|21.6| 0.76 | 6.06 | 223 | 4.3 | na | 455
GRCO-OC-23-DB-06 | 122.5-124.5 2 Tonstein?, lignite [ 1380 na | 16 | 0.45| na | 53.5 | na [ 11.3| na | 349 na na | 98 [ na [14.2(34( 444 | 1.7 [na | 199 1.05 [ 489 | 154 | 3.6 | na | 464
GRCO-OC-23-DB-07 | 124.5-139.5| 15 Lignite 1580 na| 47 [035| na| 483 | na | 139 na [60.9| na na | 82 [ na [19.7 1875 | 3.2 [na | 264 | 1.14 | 7.16| 225 | 2.8 | na | 543
Lignite,
carbonaceous
GRCO-0C-23-DB-08 | 139.5-152.5 13 mudstone. 836 | na 19 [059| na| 487 | na | 129| na | 411 | na na |134(na| 16 (41| 619 | 2.5 ( na|214 1 5.86 | 137 | 2.3 | na | 545
tonstein?
GRCO-OC-23-DB-09 | 152.5-162.5| 10 Lignite 6140 | na| 28 |0.23| na | 554 | na | 104 | na | 39 na na | 47 (na[239(33|5480( 1.7 (na|221| 0.8 |[187|226| 5.1 | na | 409
GRCO-0C-23-DB-10 | 162.5-185.5 23 Lignite 2440 | na 34 | 141 na | 471 | na 11 na [522| na na [12.6| na |18.8| 4.7 | 1660 | 2.9 [ na | 27.3 | 0.97 | 8.83 | 205 5 na | 439
Bulk continental crust (Taylor and McLennan, 2003, see Table 4) 250 | 29| 185 | 1.5 [ 75 18 | 1.6 3 1 11 | 128 8 37 | 02| 30 | 25| 260 1 |na| 42| 5400 1.1 |230| 1 | 80| 100

NOTES: Channel samples from the top downward stratigraphically at the outcrop. All results in ppm. na - not available.

Gray highlighted results indicate results equal to or greater than 5x the bulk continental crust concentrations reported by Taylor and McLennan (2003).

Table 4 — Other trace element laboratory results (ash basis) by ICP-MS analysis, Ramah-Fondis coal
field, Denver Basin, Colorado.
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Photo of the eroded Denver Formation lignite roadcut prior to sampling. Interbedded sandstone, claystone,
carbonaceous shale, and smaller lignite beds cap the slope-forming lignite. More resistant and relatively thin (2- to
3-inch thick) tonstein/clay layers form continuous ledges on the slope (e.g. center of photo, above the hammer)
within the eroded lignite.

14



DISCUSSION AND RECOMMENDATIONS

Most of the TREE concentrations detected in the lignite and other rock types analyzed during
this investigation are over the proposed DOE’s commercial viability benchmark of ~300 parts
per million (Table 3) (University of Wyoming, 2014; Moxness and others, 2025). The Denver
Formation lignite deposits are not currently exploited for power generation and have not been
mined since at least the 1940s. However, portions of these deposits are relatively shallow in the
Ramabh coal field and beyond where they occur at the surface with <150 feet of overburden in a
relatively large area (Carroll, 2006) (Figure 3). Based on Carroll (2006), the Denver Formation
lignites with less than 150-feet of overburden occur in an estimated area exceeding 660 square
miles. Additionally, other Denver Formation potential lignite resources occur over 1,170 square
miles between 150 and 1,000 feet deep in the Denver Basin (Carroll, 2006). Although the lignite
might not be a resource with regards to electricity generation, it could be a potential resource
with regards to REEs - the deposits are widespread, at a relatively shallow depth, and may
contain sufficient tonnage to be a resource albeit at a lower concentration (e.g., maximum
detected concentration of ~1,026 ppm TREE) than other conventional economic REE deposits
(e.g., >10,000-20,000 ppm).

TREE concentrations detected in the Denver Formation lignite were similar to, but a bit less
(North Dakota lignites can have significant TREE enrichment over 1,820 ppm; Moxness, 2025),
than some of the more recent sampling results associated with Paleocene lignites in North
Dakota (Moxness and others, 2023; Moxness and others, 2025). However, additional sampling
of the Denver Formation coals and associated strata, both horizontally and vertically, may
provide better results as this investigation was very limited (one roadcut, n = 10). Other
outcrops, and potentially core, may exist in other, or nearby, areas of this coal field as well as
others in the Denver Basin (e.g., Scranton coal field). Furthermore, most of the coal historically
mined in the Denver Coal Region, including both the Denver and Cheyenne basins, was sourced
from the Upper Cretaceous Laramie Formation, and was not sampled during this investigation.
These coals may contain elevated concentrations of materials deemed critical by the USGS and
the DOE as well.

Future work in the Denver Coal Region should include the following recommended tasks:

e I|dentify and sample additional Denver Formation and Laramie Formation outcrop
locations and/or existing core in the Denver Coal Region including areas within the
Ramah, Scranton, and other coal fields. If accessible, the well-known Kiowa core
(Raynolds and others, 2001) likely contains coal from the Denver and Laramie
formations. Outcrop sampling may be difficult as most exposures are on private land. A
few cores containing Laramie Formation coal are at the USGS core repository (USGS,
2026; core library number R944, R945, and 948).

e Determine the mode of REE occurrence (e.g., mineralogy) in the coal-bearing and
associated strata and conduct extraction/recovery tests to determine if and how REEs
could be recovered from the matrix.

e Identify and sample additional potential sources of REE in the Denver Coal Region
including the Upper Cretaceous Fox Hills Formation (O’Keeffe and others, 2020) and the
paleosol, as well as the Denver Formation coal below these lignites, within the
Paleocene portion of the Denver Basin Group. Elevated concentrations of REEs in
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lignites may be associated with the leaching of these paleosols and redistribution of
REEs within coal beds (Murphy and others, 2023). These formations may provide
additional feedstock and/or potential resources that should be considered when
determining the overall resource potential for REEs in the Denver Basin.
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APPENDIX A

Geologic log - coal seam in the Denver Formation, Ramah-Fondis coal field, CO.
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