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Appendix D: Colorado Oil and Gas Well 
Bottomhole Temperatures 
D.1 Introduction
Bottomhole temperatures (BHTs) are temperatures measured close to the bottom of wells during geophysical logging 
of boreholes drilled for oil and gas exploration and production. BHTs have a variety of different uses including correction 
of other geophysical logs that are temperature sensitive (e.g. electrical logs), geothermal studies, and studies of 
hydrocarbon maturation. When wells are drilled, the circulation of the drilling mud (or other drilling fluid) disturbs the 
temperature in the well. Well logging runs are typically made before these temperature disturbances have dissipated, 
and therefore BHTs generally do not represent undisturbed rock temperatures. A correction is therefore necessary if a 
reasonable estimate of the undisturbed rock temperature is required. A section on drilling corrections is included in this 
report.

After correction for circulation of drilling fluid, the BHT of any single well depends on the vertical heat flow through the 
rocks in which the well was drilled and the thermal conductivities of those rocks. Assuming one-dimensional heat flow, 
vertically upward, the temperature at any depth, z is given by Fourier’s Law of Heat Transfer:

where q is the heat flow, positive upward, K(z) is the vertical component of the thermal conductivity of rocks as a 
function of depth, z, increasing downward, and        is the rate of change of temperature with depth, or the geothermal 
gradient. Equation can be rewritten as:
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), then the BHT is given by:

Equations 2 and 3 illustrate that BHTs do not increase linearly with depth but are also controlled by the thermal 
conductivities of the rocks. Thermal conductivities may change by as much as a factor of two in Colorado basins, for 
example between low conductivity shales and higher conductivity sandstones and limestones. This results in a high 
thermal gradient in shales and relatively low thermal gradient in sandstones and limestones. Thus, to understand and 
interpret BHT data, variations in vertical thermal conductivity must be taken into account.

D.2 Drilling Corrections
BHT data are primarily temperatures recorded on well-log headers from measurements recorded during routine logging 
operations of hydrocarbon wells. Temperature measurements are generally made with electrical thermometers in 
logging tools or with maximum-recording thermometers in pressure tubes (to prevent pressure from increasing the 
apparent temperature) that are fixed at the top of, or just above, the logging tool. BHT measurement may be repeated 
during a sequence of logging runs in a borehole. BHT data are not reported on all log headers, nor for all wells. The 
primary use for recording temperature data with well logs is in correcting for the temperature coefficient of electrical 
resistance in resistivity logs: the temperature data are therefore of secondary importance to the loggers. However, large 
quantities of BHT data may be obtained for only the expense of extracting the data from well-log headers, which makes 
them a useful regional reconnaissance tool for geothermal exploration, even if individual accuracy of the data may be 
low.
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Initial geophysical logs are generally run in hydrocarbon wells within a day of the end of drilling and completed within 
a few days of the completion of drilling. During drilling, a fluid is circulated down through the drill rods, through the 
bit, and back up the borehole in the annulus between the drill rods and the borehole or casing. The purpose of this 
fluid is to cool the bit and remove rock fragments produced during drilling. Rarely is this fluid at the same temperature 
as the rock that is being drilled, and consequently the circulating fluid is either heated or cooled by the formation. As 
the drilling progresses to depth the rock is generally hotter than the fluid and in response to the cooler fluid the rock is 
cooled. The cooling effect is increased if the fluid penetrates into the rock. Drilling fluid is generally circulated in a well 
after the completion of drilling for several hours to clean out and stabilize the borehole before logging, so even the 
bottom of a borehole has a significant period of cooling before logging. In addition, BHT measurements are not made at 
the bottom of the hole, but at the depth of the temperature measurement device, a few meters above maximum depth 
penetrated by the logging tool. Thus, at the depth at which the BHT is measured there may have been several hours of 
drilling fluid circulation and cooling of the rock. The change in temperature of the rock caused by the fluid circulation 
is called the “drilling disturbance.” A correction for the drilling disturbance is necessary to estimate the undisturbed rock 
temperatures before drilling.

Guyod (1) discussed a number of factors 
associated with drilling that result in non-
thermal equilibrium conditions in a well. 
Figure 1 shows the typical surface system 
for circulating and recycling drilling fluid in 
a drilling operation. One of the first, if not 
the first, attempts to calculate the drilling 
disturbance associated with drilling was by 
Bullard (2). Bullard used an approximate 
analytical solution to estimate the time 
necessary for the drilling disturbance to 
decay. He concluded that the time could 
be as long as months for temperatures 
along the length of the borehole, but as 
short as a day for the temperature at the 
bottom of the hole.

Figure D.1: Diagram of oil drilling rig basic components. Path of drilling 
fluid circulation is shown by red arrows from mud pit (9) through mud pump 
(11) up stand pipe (14) through Kelley hose into draw works (4) down in drill 
pipe (5), through the drill bit (7), into the casing head (8), through the flow 
line (12), into the shale shaker (10), and back into the mud pit (9). Samples 
of the rock formations being drilled are recovered from the shale shaker (10). 
The drilling fluid may range from heavy mud to water, to an air/water mist.1

1	 Drilling rig diagram: Tosaka, http://commons.wikimedia.org/wiki/File:Oil_Rig_NT.PNG. Image use courtesy of 
Creative Commons Attribution 3.0 Unported license.

http://commons.wikimedia.org/wiki/File:Oil_Rig_NT.PNG
https://creativecommons.org/licenses/by/3.0/deed.en
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There are many techniques for estimating the drilling disturbance. These techniques cover a wide range of modeling 
assumptions including treating the drilling-fluid circulation as a line heat-source, modeling the drilling mud and wall-
rock separately, finite-difference and finite-element models, two-dimensional, three-dimensional, fitting the disturbed 
data to equilibrium temperature data, and other techniques and variables. Some of these techniques and the modeling 
assumptions that they use are given in Table D.1 together with the number of parameters that are required to apply the 
techniques. Some of the techniques, such as Horner (3), are designed to require no parameters, but they require a series 
of temperature measurements through time from which the equilibrium temperature is extrapolated; in fact, Horner (3) 
describes a technique to recover equilibrium pressures from non-equilibrium pressure data, but the technique has been 
adapted for temperature data. In practice, there is no ideal or universally accepted method for estimating the drilling 
disturbance because drilling practices vary and the data recorded on log headers are not always the same. BHTs are not 
recorded in all wells, and if they are recorded, they are not always repeated in multiple logging runs. Having multiple 
temperature measurements that form a smooth time series converging on an equilibrium temperature gives confidence 
in a technique to estimate the drilling disturbance (i.e. 1,2). However, if only one BHT is available, techniques requiring 
multiple temperature values cannot be applied.

Table D.1: Examples of publications for techniques for estimating the drilling disturbance with the assumptions used in the 
techniques. References are in alphabetical order.

D.2.1 Drilling Disturbance Corrections in Colorado

Examination of headers from logs from several thousand hydrocarbon wells in Colorado indicates that BHT 
measurements are rarely repeated during multiple logging runs in a well. Temperatures may be recorded as derived 
from different logging runs, but these temperatures are almost always the same temperature as recorded for the first 
log, and most likely the first log BHT has been copied on subsequent log headers. This lack of information prevents the 
extrapolation of equilibrium rock temperatures from multiple temperature-time readings.

In addition, drilling and circulation times relative to logging time, the exact depth of the BHT measurement, and drilling 
fluid temperature are not recorded on Colorado log headers. Without this information, an analytical or numerical model 
of the drilling disturbance cannot be generated. For some wells, there are temperatures obtained from drill-stem tests 
(DSTs), i.e., tests in which a section of the well is isolated and fluid is produced from the rock formation in the isolated 
section. Temperatures of this fluid are commonly assumed to be good estimates of the undisturbed rock temperatures 
because they measure the temperature of the rock fluid (i.e., 28 p. 59). However, if there is a component of expanding 
gas, gas adiabatic expansion causes cooling and thus the DST temperatures will be lower than undisturbed rock 
temperatures. The amount of cooling depends on the amount of gas associated with each DST. In addition, bond logs 
are run to ensure that the bottom of the well is securely cemented, and some of these logs are run several weeks after 
the cessation of drilling. As temperatures at the bottom of the drill hole relax to their undisturbed temperatures more 
rapidly than shallower intervals where temperatures are disturbed for longer periods, cement bond log BHTs taken 
several weeks after drilling were examined as a test of their approximation to virgin rock temperatures.

Model Parameters

Reference Number 4 5 6 2 7 8 9 10 11 1 12 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

# Required Parameters 0 0 3 3 0 0 0 5 3 0 2 0 5 2 3 7 6 6 7 5 0 0 1 5 5 6 2

Fit to equilibrium 
Temperatures

X X X

Cylindrical Coordinates X X X X X X X X X X X X X X X X X X X X X X X

Cartesian Coordinates

3 Dimensional X

2 Dimensional X X X X X X X X X X X X X X X X X X X X X X

Graphical X X X X X X X

Finite Element X

Finite Difference X X X

Analytical X X X X X X X X X X X X X X X X X X

Inversion of Parameters X X X X X

Lateral Fluid Flow X X

Radial Fluid Flow X X X X

Zero Circulation Time X X X X X X X X

Two Media X X X X X X X X X

Single Medium X X X X X X X X X X X X X X X X

Exponential Decay X X X X

Line Source X X X X X
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Corrections were derived for each basin based on DSTs, and where these were not available, corrections were based on 
suitable cement bond log temperatures. These were used in the first CGS release of the Colorado BHT data. However, 
during preparation of this report, three precision temperature logs were made available to CGS, two in the Denver Basin 
and one in the Raton Basin, and the corrected BHTs were found to be undercorrected (Figures D.2 and D.3). A new 
search for methods to correct the BHTs for the drilling disturbance was therefore made.

Figure D.2: Temperature vs. depth plots for Lauren-1 and Melissa-1 oil wells in the Denver Basin.2 BHTs are from well 
scout cards with old correction and new correction.

 
 
 
 
 
 
 
 
 
 
Figure D.3: Temperature vs. depth plots for Jarosa 32-33 water disposal well in the Denver Basin.3 No BHT was measured 
in this well so BHTs were taken from the closest coalbed methane wells in longitude and latitude and plotted with the old and 
new corrections.

2	 Graph created by Paul Morgan (CGS) with data courtesy of SMU Geothermal Lab.
3	 Graph created by Paul Morgan (CGS) with data courtesy of Pioneer.
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A new extensive literature search found a few publications that studied a large German BHT database in which most of 
the data were single BHT measurements. This database was the subject of study over at least three and a half decades 
to develop a BHT correction based on an empirical correlation (29–32). The empirical correlation allows drilling 
corrections for Colorado BHTs to be estimated where only single BHT measurements are available. The equilibrium 
formation temperature, T

∞
, derived as Equation 5 of Agemar (31) and developed from the earlier reports, is:

where BHT(t) is the BHT measured at time t (time after cessation of circulation of drilling fluid), a is the radius of the 
hole, T

0
 is the average ground surface temperature of the basin, and k is thermal diffusivity. In many of the German wells 

and most Colorado wells, t is not known. From a statistical analysis of the German BHT dataset, Bolotovskiy et al. (32) 
determined t as a function of the measurement depth, z in meters, as:

t = (3.612 + 0.001639 * z)* 3600 seconds

In Bolotovskiy et al. (32), the suggestion was made that a constant radius of 0.08 m (6.25 in) gave the best results for 
the formula used in that report, but Agemar (30,31) reported that reliable results were obtained with the real radii of the 
wells. For the Denver Basin wells, not all well radii were given. When corrections were calculated for the Lauren-1 and 
Melissa-1 wells, one corrected BHT was too high and the other too low. When the well parameters were examined, 
the radii reported for these two wells were different by a factor of two. When the actual radii were replaced by 0.08 m, 
both corrected BHTs were close to the SMU measured log temperatures. With the lack of data and poor results with the 
Lauren-1 and Melissa-1 corrected BHTs, therefore, a radius of 0.08 m was used in Equation 4 for all Colorado wells.

Schulz and Werner (29) used a thermal diffusivity of 1.2 x 10-7 m2/s but subsequent reports and Agemar (31) used a 
value of 1.5 x 10-7 m2/s. The thermal diffusivity of liquid water ranges from 1.32 x 10-7 m2/s at 0°C to 1.68 x 10-7 m2/s at 
100°C (33). Water is incompressible at this level of precision. Thermal diffusivity is a property of thermal conduction, 
whereas heat transfer between the drilling fluid and the rock surrounding the borehole is a combination of convection 
and conduction. Thermal diffusivity in this formula is a proxy term rather than a strict physical property. Thus, the term 
proxy diffusivity will be used in this context for this document. The best match to the SMU log temperatures for the 
Lauren-1 and Melissa-1 wells were given with a thermal diffusivity of 1.2 x 10-7 m2/s.  Figure D.3 shows the SMU logs, 
the measured BHTs, the original corrected BHTs and the new corrected BHTs.

An equilibrium temperature log is available for a deep water disposal well in the Raton Basin, Jarosa 32-33 WDW, but a 
BHT was not available. BHTs were therefore taken from the most proximal coalbed methane wells, and these measured 
BHTs and their old and new corrected values are shown with the equilibrium log in Figure D.3. Air mist is used as the 
drilling fluid for coalbed methane wells in the Raton Basin rather than the “mud” utilized for gas and oil wells in other 
basins in Colorado. No reference was found for the proxy diffusivity for air mist drilling fluid, and therefore this was an 
unconstrained parameter. The diffusivity that gave the new corrections shown in Figure 2 was 1.6 x 10-7 m2/s. Using a 
higher proxy diffusivity for air mist than for mud appears to contradict the conductive thermal properties of air mist and 
mud. However, air mist circulates in the well much faster than mud and therefore may transfer heat faster than slow-
flowing mud.

(4)

(5)
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