Feb 172017
 
IS-79 Colorado Mineral and Energy Industry Activities 2015-16 (cover)

The current annual Colorado Mineral and Energy Industry Activities report 2015-16 is now available. Following up on the 2014 report, this report, based on 2015 production data, sketches a comprehensive overview of Colorado’s mineral resource production. Of note is the fact that total value of mineral and energy fuels production in Colorado for 2015 is estimated to be $13.43 billion, a 29% decline from the $18.8 billion production value in 2014. The decline was caused primarily by a precipitous decrease in oil and gas market prices which provide 70% of Colorado mineral resource revenue. Oil and gas production actually registered at all-time highs of 127.6 Mbbl and 1,709 Bcf, respectively.

Nonfuel mineral production — including metals, industrial minerals, and construction materials — posted a modest 3.9% increase in revenue. Increased production of crushed stone, cement, and sand and gravel aggregate accounted for the increase. With a 2015 production of 21,790 metric tons of molybdenum from two mines, Colorado is the largest molybdenum producer in the U.S. Although just one mine in the state publicly reported gold production in 2015, Colorado remains the third largest producer of the metal in the U.S. as it was in 2014.


Citation: Cappa, James A., Michael K. O’Keefe, James R. Guilinger, and Karen A. Berry. “IS-79 Colorado Mineral and Energy Industry Activities 2015-16.” Mineral and Energy Industry. Information Series. Golden, CO: Colorado Geological Survey, 2016.
Feb 142017
 

Uranium is a widespread and ubiquitous element. It has a crustal abundance of 2.8 parts per million, slightly more than tin. Primary deposits of uranium tend to concentrate in granitic or alkalic volcanic rocks, hydrothermal veins, marine black shales, and early Precambrian age placer deposits. Secondary (or epigenetic) deposits of uranium are formed later than the surrounding rocks that host the mineral deposit. Uranium is soluble in oxidizing aqueous solutions, especially the U+6 valence state, and can be redistributed from primary source rocks into porous sedimentary rocks and structures by groundwater and form secondary (epigenetic) uranium mineral deposits.

Epigenetic deposits of uranium in sedimentary rocks form the bulk of uranium deposits in Colorado. These include the many mines of the Uravan, Cochetopa, Maybe, and Rifle districts, and other scattered places including the Front Range and Denver Basin. Primary uranium deposits in Colorado occur in hydrothermal veins, especially in the Front Range. Continue reading »

Feb 062017
 

With all the precipitation in the Rockies this year (we’re at +153% normal snowpack at the moment), we thought we would re-release a publication that highlights at least one important aspect of Colorado snowfall — that is, the significant danger of avalanches. The Snowy Torrents: Avalanche Accidents in the United States 1980-86, compiled and written by Nick Logan and Dale Atkins and illustrated with Larry Scott’s fine pencil drawings, was first published in 1996. We still have a few hard-copies available and, because of that, yes, we do charge for the PDF download. However, Larry went back and re-made the PDF from the original publication file, producing a file that is far better than the rather poor digital scan we had offered previously.

The volume details 146 oft-times harrowing stories surrounding avalanches, the lives they claim, survivors and witnesses, along with assessments as to what happened, why it happened, and what could have been done to prevent loss of life and/or property. The authors are never judgmental, and their clear-eyed accounts contain a wealth of wisdom that will add to the knowledge-base of any winter backcountry enthusiast.


Citation: Logan, Nick, and Dale Atkins. SP-39 The Snowy Torrents: Avalanche Accidents in the United States, 1980–86. Special Publications 39. Denver, CO: Colorado Geological Survey, Department of Natural Resources, 1996.
Jan 312017
 

A collaboration between the CGS and the Denver Museum of Nature & Science (DMNS) has resulted in a new stratigraphic chart for the state of Colorado. This beautifully (offset-)printed 42″ x 39″ color chart was designed from the ground up to illustrate the Proterozoic to Holocene stratigraphy that spans the state’s many sedimentary basins. A collaborative effort led by Robert Raynolds and James Hagadorn, the chart builds upon the work of dozens of colleagues and updates Richard Pearl’s seminal 1974 stratigraphy chart. The chart leverages the community’s stratigraphic work in both the subsurface and outcrop, and depicts new geochronologic constraints for many units. To facilitate comparison of strata to external forcing factors, the chart employs a linear timescale. Each unit’s dominant depositional environment is depicted as are major mountain building events, erosional events, and regional unconformities. Printed on heavy-duty 100# coated cover stock, these rolled posters may be purchased from the CGS online bookstore. They will make a fine gift for geoscientists, rockhounds, or anyone interested in how Colorado’s magnificent landscapes came to be.



From the chart itself:

Colorado’s stratigraphy is dominated by gaps. The distribution of strata reflects the tectonic and climatic evolution of each of the region’s eleven basin areas, depicted in the map below. To foster comparison of these patterns, we have organized the stratigraphy using a linear timescale and illustrated where orogenic uplift has led to removal of strata or nondeposition. Not all orogenic features are illustrated on the chart. For example, some orogenies caused sediment ponding and accumulation in intermontane basins, such as during the Laramide in northwestern Colorado. In the past ~10 Ma, regional uplift has raised Colorado and has allowed the modern landscapes to be created due to erosion. The chart’s color scheme for stratigraphic units gives a sense of dominant lithologies and depositional environments across basins. Updates to this chart, as well as additional stratigraphic resources, such as stratigraphic and structural cross-sections, may be found at http://coloradostratigraphy.org. To learn more about the unit names on this chart, resources are available at the U.S. Geological Survey’s Geolex site. This chart scaffolds on the work of Richard H. Pearl’s 1977 compilation (Rocky Mountain Association of Geologists, Special Publication 2). With the exception of the Carboniferous and Permian periods, this data has been re-cast against the International Commission on Stratigraphy’s chronostratigraphic chart v. 2015/01, updated at http://stratigraphy.org.


Citation: Raynolds, R. G., and James W. Hagadorn. “MS-53 Colorado Stratigraphy Chart.” Stratigraphic. Map Series 53. Denver, CO: Colorado Geological Survey and the Denver Museum of Nature & Science, January 2017.
Jan 302017
 

Introduction

The earth’s surface can subside because of underground mining when rock is removed at depth. Although subsidence can occur due to hard rock mining, this article only considers the effects of coal mining.

When coal is extracted underground, gravity and the weight of the overlying rock may cause the layers of rock to shift and sink downward into the void left by the removal of the coal. Ultimately, this process can affect the surface, causing the ground to sag and crack and holes to form. Merely an inch of differential subsidence beneath a residential structure can cause several thousand dollars worth of damage.

Subsidence can happen suddenly and without warning. Detailed investigations of an undermined area are needed before development occurs to resolve the magnitude of the subsidence hazard and to determine if safe construction is possible. While investigations after development can determine the extent of undermining and potential subsidence, often, existing buildings cannot be protected against subsidence hazards. The cost of remedial measures is often extremely high. Continue reading »

Jan 232017
 

The CGS’s Matt Morgan and Jon White were two of the co-authors on one of the top-ten Geological Society of America (GSA) 2016 book chapters and journal articles, this out of 600 papers. The article describes a comprehensive forensic analysis of the massive West Salt Creek rock avalanche that occurred in late May 2014 in western Colorado (USA). The analysis relied on large-scale (1:1000) structural mapping accomplished via high-resolution unmanned aircraft system imagery along with seismic data generated by more than twenty stations within approximately 500 miles (800 km) of the event. The avalanche was the largest mass-movement slope failure in the historical record of Colorado, and it killed three people, narrowly avoiding destroying a gas wellhead.


Citation: Coe, Jeffrey A., Rex L. Baum, Kate E. Allstadt, Bernard F. Kochevar, Robert G. Schmitt, Matthew L. Morgan, Jonathan L. White, Benjamin T. Stratton, Timothy A. Hayashi, and Jason W. Kean. 2016. “Rock-Avalanche Dynamics Revealed by Large-Scale Field Mapping and Seismic Signals at a Highly Mobile Avalanche in the West Salt Creek Valley, Western Colorado.” Geosphere 12 (2): 607–31. doi:10.1130/GES01265.1.
Jan 122017
 

At the end of the 19th and beginning of the 20th Century, some of the first settlers of the plateau region of western Colorado along the Colorado River, and the Uncompahgre and Paonia river basins, looked to fruit crops for their livelihood. The semi-arid but moderate climate was well suited for fruit orchards once irrigation canal systems could be constructed.

But serious problems occurred when certain lands were first broken out for agriculture and wetted by irrigation. They sank, so much in places (up to four feet!) that irrigation-canal flow directions were reversed, ponding occurred, and whole orchards, newly planted with fruit trees imported by rail and wagon at considerable expense, were lost. While not understood, fruit growers and agriculturists began to recognize the hazards of sinking ground. Horticulturists with the Colorado Agricultural College and Experimental Station (the predecessor of Colorado State University) made one of the first references to collapsible soil in their 1910 publication, Fruit-Growing in Arid Regions: An Account of Approved Fruit-Growing Practices in the Inter-Mountain Country of Western United States (pdf download). They warned about sinking ground and in their chapter, Preparation of Land for Planting, made one of the first recommendations for mitigation of the hazard. They stated that when breaking out new land for fruit orchards, the fields should be flood irrigated for a suitable time to induce soil collapse, before final grading of the orchard field, irrigation channels excavation, and planting the fruit tree seedlings. Continue reading »

Jan 112017
 

Regarding the Colorado Geological Survey (an article appearing in the Mining Reporter, March 1907):

We note that one of our contemporaries, in recently commenting on the University bill creating a State Geological Survey of Colorado — the bill reported favorably on by the joint Senate and House mining committee — voices in no uncertain language its regret at the “truly pitiable outcome of the effort to establish a Geological Survey of Colorado.” In a lengthy and well-written editorial, criticism is made of the proposed advisory board, particularly of the placing thereon of the presidents of the State University and the State Agricultural College; also, having the survey located at Boulder instead of Denver; of the naming as state geologist, the professor of geology of the State University, who may be a good teacher, but who, like the majority, may or may not be an effective executive; and lastly, of the paltry appropriation of $5,000 annually for this important work in a state productive of $50,000,000 and more yearly.

Exception is also taken to the naming of state institution teachers as assistants to the State Geologist, who ought to have the assistance of men less academic and having a knowledge of the exploitation of ore deposits and of the search for them.

This editorial expression, coming from a former Coloradoan, is worthy of consideration. It is in accord, in large part, with our own views, as our readers know. In addition to the criticisms made by our contemporary, we would like to emphasize another objectionable feature in this favorably reported bill, viz., the naming of any one as state geologist who is not to devote his entire time to the survey work. — from the Mining Reporter, vol. LV, March 28, 1907, no. 13, Denver, Colorado.

We’re happy to say that our current efforts to provide professional geologic information to the residents of Colorado far exceed the original scope of responsibilities and possibilities of the Territorial Geologist. But like those old-time miners, walking the mountains of this beautiful state, we also share a real passion for what we are doing.

You can find an in-depth history of the Survey and its 1872-legislated precursor, the office of Territorial Geologist, in IS-27 History of The Colorado Geological Survey (1872-1988), a free PDF download at our bookstore.


Citation: Rold, J. W., and S. D. Schwochow. IS-27 History of The Colorado Geological Survey (1872-1988). Information Series, IS-27. Denver, CO: Colorado Geological Survey, Department of Natural Resources, 1989.