Jan 132017
 

We’ve decided to revive one of our most popular print publications — RockTalk — as a blog so that we can continue to bring you interesting, informative, and timely postings related to our mission. This year, 2017, will see 110 years since the founding of the CGS.

The first RockTalk appeared in 1998 and was followed by forty seasonal issues until the most recent one in 2011. We constantly get requests for back issues and to continue publishing, so in accordance with the times, we decided to make the shift to digital media. We hope you will join us by subscribing (to receive an email when we make a new posting, please enter your email in the subscription box in the right-hand column).

Content-wise, we’ll be exploring all of the many aspects of our State Survey mission to:

  • Help reduce the impact of geologic hazards on the citizens of Colorado
  • Promote responsible economic development of mineral and energy resources
  • Provide geologic insight into water resources
  • Provide geologic advice and information to a variety of constituencies

And, along the way, we’ll also post pertinent information on general geology, geoscience research and education, science and engineering policy, and other items that cross our screens. If you have any questions or suggestions, please get in touch!

Feb 242017
 

One of the many fascinating videos from our geo-friends up the road at University of Colorado-Boulder.

The Interactive Geology Project was formed in 2002 by professor Paul Weimer and colleagues with the goal of producing short 3D animations about the geologic evolution of key US national parks. The first major project focused on the geology of the Colorado National Monument and is still on display in the park’s visitor center. Over time our focus shifted from national parks to animating Colorado’s geologic history, with a key goal of developing a series of 5-10 minute vignettes covering each geologic time period.

The current group of animators joined the project in the summer of 2011. In 2013 we began a major collaboration with the Denver Museum of Nature and Science to explore new ways of using 3D technology in earth science education. We work with top subject-area experts to ensure our animations are as scientifically accurate and up-to-date as possible.

Our projects are on display in museums, parks, and other venues across Colorado, the Western US, and Canada. All of our work is also available to the general public free of charge on our website and our Vimeo page.

Feb 192017
 

Diamonds are formed from pure carbon, one of the most abundant elements on planet Earth. Diamonds, even from ancient times, have been sought for their extraordinary hardness (they are the hardest substance known) and their brilliance, especially in the colorless transparent gemstone variety. Ironically the other form of pure carbon is graphite, which is very soft with a soapy feel and a dull gray color. Graphite is commonly the “lead” in a pencil.

A diamond's crystal structure: tetrahedrally bonded carbon atoms crystallized into the diamond lattice, a variation of the face-centered cubic structure.

A diamond's crystal structure: tetrahedrally bonded carbon atoms crystallized into the diamond lattice, a variation of the face-centered cubic structure.

The Mohs Hardness Scale of minerals starts at 1 (talc) and ranges to 10 (diamond). That does not mean that diamonds are ten times harder than talc; mineral number 9 on the Mohs scale is corundum, a class of minerals which includes rubies and sapphires. Diamonds can be from ten to hundreds times harder than corundum. Diamonds themselves vary in hardness; for example, stones from Australia are harder than those found in South Africa.

The four main optical characteristics of diamonds are transparency, luster, dispersion of light, and color. In its pure carbon form, diamond is completely clear and transparent. As in all natural substances, perfection is nearly impossible to find. Inclusions of other minerals and elements cause varying degrees of opacity. The surface of a diamond can be clouded by natural processes, such as the constant tumbling and scraping in the bed of a river.

Luster is the general appearance of a crystal surface in reflected light. Luster of a smooth crystal face of diamond is strong and brilliant. It is intermediate between glass and metal and has its own special term — adamantine.

Relative size of octahedral diamond crystals from 1 to 500 carats. Credit: Modified from Bauer, 1968.

Relative size of octahedral diamond crystals from 1 to 500 carats. Credit: Modified from Bauer, 1968.

The process of white light breaking up into its constituent colors is called dispersion. Diamonds have strong dispersion, which along with their strong luster, causes the beautiful play of colors so often referred to as the “fire” of a diamond.

Gemstone varieties of diamond and imperfections. Yellow or yellowish-brown and even brilliant yellow diamonds have been found. Very rarely, diamonds are blue, black, pale green, pink, violet, and even reddish.

The most famous blue diamond, the Hope Diamond, is intertwined with Colorado’s mining history. Thomas Walsh, discoverer of the rich Camp Bird Mine near Ouray, purchased the Hope Diamond for his wife in the early 1900s; it was later given to his daughter, Evelyn Walsh McLean who wore it almost continuously until the 1940s. The 45.5-carat Hope Diamond now resides at the National Museum of Natural History in Washington, D.C.

Diamonds, in their perfect cubic crystal form, occur as isolated octahedral (eight-sided) crystals. Many variations on the cubic form are found in are usually clear and colorless, often containing minor inclusions nature, including twelve-sided crystals and a flattened triangular shape known as a macle. Gemologists recognize three main varieties of diamonds: ordinary, bort, and carbonado. Ordinary diamonds occur as crystals often with rounded faces, from colorless and free from flaws (“the first water” [1]) to stones of variable color and full of flaws. Bort diamonds occur in rounded forms without a good crystal structure. They are generally of inferior quality as a gemstone. Carbonados are black opaque diamonds usually from the Bahia Province of Brazil. They are crystalline but do not possess the mineral cleavage found in ordinary diamonds.

[1] An expression which refers to the highest quality diamonds and has come to mean the highest quality of just about anything. The comparison of diamonds with water dates back to at least the early 17th century, and Shakespeare alludes to it in Pericles, 1607:

Heavenly jewels which Pericles hath lost, Begin to part their fringes of bright gold.
The diamonds of a most praisèd water Doth appear, to make the world twice rich.

Diamonds in the rough, note the regular octahedral forms and trigons (of positive and negative relief) formed by natural chemical etching.

Diamonds in the rough, note the regular octahedral forms and trigons (of positive and negative relief) formed by natural chemical etching.

Feb 172017
 
IS-79 Colorado Mineral and Energy Industry Activities 2015-16 (cover)

The current annual Colorado Mineral and Energy Industry Activities report 2015-16 is now available. Following up on the 2014 report, this report, based on 2015 production data, sketches a comprehensive overview of Colorado’s mineral resource production. Of note is the fact that total value of mineral and energy fuels production in Colorado for 2015 is estimated to be $13.43 billion, a 29% decline from the $18.8 billion production value in 2014. The decline was caused primarily by a precipitous decrease in oil and gas market prices which provide 70% of Colorado mineral resource revenue. Oil and gas production actually registered at all-time highs of 127.6 Mbbl and 1,709 Bcf, respectively.

Nonfuel mineral production — including metals, industrial minerals, and construction materials — posted a modest 3.9% increase in revenue. Increased production of crushed stone, cement, and sand and gravel aggregate accounted for the increase. With a 2015 production of 21,790 metric tons of molybdenum from two mines, Colorado is the largest molybdenum producer in the U.S. Although just one mine in the state publicly reported gold production in 2015, Colorado remains the third largest producer of the metal in the U.S. as it was in 2014.


Citation: Cappa, James A., Michael K. O’Keefe, James R. Guilinger, and Karen A. Berry. “IS-79 Colorado Mineral and Energy Industry Activities 2015-16.” Mineral and Energy Industry. Information Series. Golden, CO: Colorado Geological Survey, 2016.
Feb 172017
 

Dr. Cílek, the Director of the Czech Republic’s Academy of Sciences Institute of Geology delivers a fascinating talk about the Bohemian Karst region of the Czech Republic, around Beroun, that weaves the human historical, mystical, and mythological elements with the underlying geology and speleology.

(00:36:32, stereo audio, 70.1 mb)

Bohemian karst (Český kras) landscape formed in a limestone of Silurian and mainly Devonian age. The area hosts several international stratotype and parastratotype sections, including the main Silurian/Devonian Global Boundary Stratotype Section at Suchomasty. Photo credit: Milos Sejn.

Bohemian karst (Český kras) landscape formed in a limestone of Silurian and mainly Devonian age. The area hosts several international stratotype and parastratotype sections, including the main Silurian/Devonian Global Boundary Stratotype Section at Suchomasty. Photo credit: Milos Sejn.

Feb 142017
 

Uranium is a widespread and ubiquitous element. It has a crustal abundance of 2.8 parts per million, slightly more than tin. Primary deposits of uranium tend to concentrate in granitic or alkalic volcanic rocks, hydrothermal veins, marine black shales, and early Precambrian age placer deposits. Secondary (or epigenetic) deposits of uranium are formed later than the surrounding rocks that host the mineral deposit. Uranium is soluble in oxidizing aqueous solutions, especially the U+6 valence state, and can be redistributed from primary source rocks into porous sedimentary rocks and structures by groundwater and form secondary (epigenetic) uranium mineral deposits.

Epigenetic deposits of uranium in sedimentary rocks form the bulk of uranium deposits in Colorado. These include the many mines of the Uravan, Cochetopa, Maybe, and Rifle districts, and other scattered places including the Front Range and Denver Basin. Primary uranium deposits in Colorado occur in hydrothermal veins, especially in the Front Range. Continue reading »

Feb 062017
 

With all the precipitation in the Rockies this year (we’re at +153% normal snowpack at the moment), we thought we would re-release a publication that highlights at least one important aspect of Colorado snowfall — that is, the significant danger of avalanches. The Snowy Torrents: Avalanche Accidents in the United States 1980-86, compiled and written by Nick Logan and Dale Atkins and illustrated with Larry Scott’s fine pencil drawings, was first published in 1996. We still have a few hard-copies available and, because of that, yes, we do charge for the PDF download. However, Larry went back and re-made the PDF from the original publication file, producing a file that is far better than the rather poor digital scan we had offered previously.

The volume details 146 oft-times harrowing stories surrounding avalanches, the lives they claim, survivors and witnesses, along with assessments as to what happened, why it happened, and what could have been done to prevent loss of life and/or property. The authors are never judgmental, and their clear-eyed accounts contain a wealth of wisdom that will add to the knowledge-base of any winter backcountry enthusiast.


Citation: Logan, Nick, and Dale Atkins. SP-39 The Snowy Torrents: Avalanche Accidents in the United States, 1980–86. Special Publications 39. Denver, CO: Colorado Geological Survey, Department of Natural Resources, 1996.
Feb 012017
 

By Jill Carlson

On March 23, 2003, a large avalanche occurred about one mile west of the Town of Silver Plume. The avalanche brought trees, rock, soil and snow to the valley floor, knocked down overhead utility lines, blocked the I-70 frontage road, damaged the town’s water treatment plant (WTP), and dammed Clear Creek. The dam was breached using explosives before the plant’s electric pump motors were flooded. With damage to the WTP’s chlorine contact tank and building, Silver Plume residents had to boil their tap water for over a month.

The avalanche occurred three days after near-record snowfall. It was triggered by additional snow loading in the starting zone caused by a change in wind direction, and began in a known avalanche path above timberline on Pendleton Mountain. Its unusually large volume and velocity caused it to unexpectedly reach the valley floor, along a path not previously identified as an avalanche chute. Rick Gaubatz, the Town’s water commissioner, counted 110 rings in a spruce tree that was found in the avalanche debris at the damaged WTP, indicating that an avalanche of similar magnitude had not occurred in the immediate area in at least 110 years.

Avalanche debris in the runout zone taken by Xcel Energy from a helicopter on the morning after the avalanche occurred, 24 March, 2003.

Avalanche debris in the runout zone taken by Xcel Energy from a helicopter on the morning after the avalanche occurred, 24 March 2003.

Continue reading »

Jan 312017
 

A collaboration between the CGS and the Denver Museum of Nature & Science (DMNS) has resulted in a new stratigraphic chart for the state of Colorado. This beautifully (offset-)printed 42″ x 39″ color chart was designed from the ground up to illustrate the Proterozoic to Holocene stratigraphy that spans the state’s many sedimentary basins. A collaborative effort led by Robert Raynolds and James Hagadorn, the chart builds upon the work of dozens of colleagues and updates Richard Pearl’s seminal 1974 stratigraphy chart. The chart leverages the community’s stratigraphic work in both the subsurface and outcrop, and depicts new geochronologic constraints for many units. To facilitate comparison of strata to external forcing factors, the chart employs a linear timescale. Each unit’s dominant depositional environment is depicted as are major mountain building events, erosional events, and regional unconformities. Printed on heavy-duty 100# coated cover stock, these rolled posters may be purchased from the CGS online bookstore. They will make a fine gift for geoscientists, rockhounds, or anyone interested in how Colorado’s magnificent landscapes came to be.



From the chart itself:

Colorado’s stratigraphy is dominated by gaps. The distribution of strata reflects the tectonic and climatic evolution of each of the region’s eleven basin areas, depicted in the map below. To foster comparison of these patterns, we have organized the stratigraphy using a linear timescale and illustrated where orogenic uplift has led to removal of strata or nondeposition. Not all orogenic features are illustrated on the chart. For example, some orogenies caused sediment ponding and accumulation in intermontane basins, such as during the Laramide in northwestern Colorado. In the past ~10 Ma, regional uplift has raised Colorado and has allowed the modern landscapes to be created due to erosion. The chart’s color scheme for stratigraphic units gives a sense of dominant lithologies and depositional environments across basins. Updates to this chart, as well as additional stratigraphic resources, such as stratigraphic and structural cross-sections, may be found at http://coloradostratigraphy.org. To learn more about the unit names on this chart, resources are available at the U.S. Geological Survey’s Geolex site. This chart scaffolds on the work of Richard H. Pearl’s 1977 compilation (Rocky Mountain Association of Geologists, Special Publication 2). With the exception of the Carboniferous and Permian periods, this data has been re-cast against the International Commission on Stratigraphy’s chronostratigraphic chart v. 2015/01, updated at http://stratigraphy.org.


Citation: Raynolds, R. G., and James W. Hagadorn. “MS-53 Colorado Stratigraphy Chart.” Stratigraphic. Map Series 53. Denver, CO: Colorado Geological Survey and the Denver Museum of Nature & Science, January 2017.
Jan 302017
 

Introduction

The earth’s surface can subside because of underground mining when rock is removed at depth. Although subsidence can occur due to hard rock mining, this article only considers the effects of coal mining.

When coal is extracted underground, gravity and the weight of the overlying rock may cause the layers of rock to shift and sink downward into the void left by the removal of the coal. Ultimately, this process can affect the surface, causing the ground to sag and crack and holes to form. Merely an inch of differential subsidence beneath a residential structure can cause several thousand dollars worth of damage.

Subsidence can happen suddenly and without warning. Detailed investigations of an undermined area are needed before development occurs to resolve the magnitude of the subsidence hazard and to determine if safe construction is possible. While investigations after development can determine the extent of undermining and potential subsidence, often, existing buildings cannot be protected against subsidence hazards. The cost of remedial measures is often extremely high. Continue reading »

Jan 232017
 

The CGS’s Matt Morgan and Jon White were two of the co-authors on one of the top-ten Geological Society of America (GSA) 2016 book chapters and journal articles, this out of 600 papers. The article describes a comprehensive forensic analysis of the massive West Salt Creek rock avalanche that occurred in late May 2014 in western Colorado (USA). The analysis relied on large-scale (1:1000) structural mapping accomplished via high-resolution unmanned aircraft system imagery along with seismic data generated by more than twenty stations within approximately 500 miles (800 km) of the event. The avalanche was the largest mass-movement slope failure in the historical record of Colorado, and it killed three people, narrowly avoiding destroying a gas wellhead.


Citation: Coe, Jeffrey A., Rex L. Baum, Kate E. Allstadt, Bernard F. Kochevar, Robert G. Schmitt, Matthew L. Morgan, Jonathan L. White, Benjamin T. Stratton, Timothy A. Hayashi, and Jason W. Kean. 2016. “Rock-Avalanche Dynamics Revealed by Large-Scale Field Mapping and Seismic Signals at a Highly Mobile Avalanche in the West Salt Creek Valley, Western Colorado.” Geosphere 12 (2): 607–31. doi:10.1130/GES01265.1.
Jan 162017
 

On solid ground — that’s how many of us think of good old, stable earth. So it’s disconcerting when the ground moves out from under us in any way.

Because of our environment, history, and geology, Colorado has conditions where ground movements can costs millions of dollars in annual property damage from repair and remediation, litigation, required investigations, and mitigation. There has been recent attention to swelling clay soils and heaving claystone bedrock, and the media has helped publicize these problems, which are predominant along the Front Range. But that’s only half the story. Geologic hazards in Colorado also include ground that sinks. Ground subsidence and soil settlement pose significant hazards in Colorado in many areas throughout the state. A variety of causes, some human-made and others inherent to the geology and geomorphology of Colorado, cause these sinking problems. Continue reading »

Jan 122017
 

At the end of the 19th and beginning of the 20th Century, some of the first settlers of the plateau region of western Colorado along the Colorado River, and the Uncompahgre and Paonia river basins, looked to fruit crops for their livelihood. The semi-arid but moderate climate was well suited for fruit orchards once irrigation canal systems could be constructed.

But serious problems occurred when certain lands were first broken out for agriculture and wetted by irrigation. They sank, so much in places (up to four feet!) that irrigation-canal flow directions were reversed, ponding occurred, and whole orchards, newly planted with fruit trees imported by rail and wagon at considerable expense, were lost. While not understood, fruit growers and agriculturists began to recognize the hazards of sinking ground. Horticulturists with the Colorado Agricultural College and Experimental Station (the predecessor of Colorado State University) made one of the first references to collapsible soil in their 1910 publication, Fruit-Growing in Arid Regions: An Account of Approved Fruit-Growing Practices in the Inter-Mountain Country of Western United States (pdf download). They warned about sinking ground and in their chapter, Preparation of Land for Planting, made one of the first recommendations for mitigation of the hazard. They stated that when breaking out new land for fruit orchards, the fields should be flood irrigated for a suitable time to induce soil collapse, before final grading of the orchard field, irrigation channels excavation, and planting the fruit tree seedlings. Continue reading »

Jan 112017
 

Regarding the Colorado Geological Survey (an article appearing in the Mining Reporter, March 1907):

We note that one of our contemporaries, in recently commenting on the University bill creating a State Geological Survey of Colorado — the bill reported favorably on by the joint Senate and House mining committee — voices in no uncertain language its regret at the “truly pitiable outcome of the effort to establish a Geological Survey of Colorado.” In a lengthy and well-written editorial, criticism is made of the proposed advisory board, particularly of the placing thereon of the presidents of the State University and the State Agricultural College; also, having the survey located at Boulder instead of Denver; of the naming as state geologist, the professor of geology of the State University, who may be a good teacher, but who, like the majority, may or may not be an effective executive; and lastly, of the paltry appropriation of $5,000 annually for this important work in a state productive of $50,000,000 and more yearly.

Exception is also taken to the naming of state institution teachers as assistants to the State Geologist, who ought to have the assistance of men less academic and having a knowledge of the exploitation of ore deposits and of the search for them.

This editorial expression, coming from a former Coloradoan, is worthy of consideration. It is in accord, in large part, with our own views, as our readers know. In addition to the criticisms made by our contemporary, we would like to emphasize another objectionable feature in this favorably reported bill, viz., the naming of any one as state geologist who is not to devote his entire time to the survey work. — from the Mining Reporter, vol. LV, March 28, 1907, no. 13, Denver, Colorado.

We’re happy to say that our current efforts to provide professional geologic information to the residents of Colorado far exceed the original scope of responsibilities and possibilities of the Territorial Geologist. But like those old-time miners, walking the mountains of this beautiful state, we also share a real passion for what we are doing.

You can find an in-depth history of the Survey and its 1872-legislated precursor, the office of Territorial Geologist, in IS-27 History of The Colorado Geological Survey (1872-1988), a free PDF download at our bookstore.


Citation: Rold, J. W., and S. D. Schwochow. IS-27 History of The Colorado Geological Survey (1872-1988). Information Series, IS-27. Denver, CO: Colorado Geological Survey, Department of Natural Resources, 1989.
Jan 102017
 

Many areas of Colorado are underlain by bedrock that is composed of evaporite minerals. Indicative of the word evaporite, these minerals were deposited during the cyclic evaporation of shallow seas that existed in central Colorado millions of years ago. As the water continued to evaporate, the remaining solution became hyperconcentrated with salts: minerals such as gypsum, anhydrite, and halite (rock salt). These minerals precipitate out of solution and accumulate in shallow nearshore basins on the bottom of the sea floor. Depending on the paleoevironment, thinly interbedded fine sandstone, mudstone, and black shales can also occur in the evaporite. Mostly Late Paleozoic and Mesozoic rock formations contain evaporite beds in Colorado. Some are thin and discontinuous — only minor beds within a rock formation. Others are massive, with evaporitic minerals many hundreds of feet thick.

Evaporitic bedrock locations in Colorado. [Gypsum Mines from Mineral Resources of Colorado, 1968, P. 191; Geology Modified From Tweto, 1979]

Evaporitic bedrock locations in Colorado. [Gypsum Mines from MI-07 Mineral and Water Resources of Colorado, 1968, P. 191; Geology modified from Tweto, 1979]

Millions of years of burial, plastic deformation, mountain building, and erosion have forced the evaporite beds to the shallow subsurface and/or ground surface today. Evaporite minerals in Colorado are a valuable mining resource. Historic mining occurred throughout the state where thin gypsum beds were exposed. Active mining continues in the massive deposits near the town of Gypsum. Continue reading »